Gifts for the science lover in your life.

It’s been a long day. The PCR machine broke (again), your buffer solution may be contaminated and you’ve just realised that your data is all non-parametric so your statistics could be totally off. Although the gods of scientific endeavour may not be smiling on you today, you know deep down that you’re still a grade A science nerd and you just need a little ‘pick-me-up’. So, as a favour to your inner geek, we at the brain bank have compiled a list of some of our favourite science-themed gifts

Go ahead, give your brain a treat!

1: Giant microbes.

If, like me, you are a sucker for anything cute, fluffy and quirky you’ll most likely love Giant microbes. From Cholera to the Common Cold, these fuzzy oddities somehow brain-cellsucceed in making microbes mesmerisingly cute. As a neuroscientist my personal favorite has to be the brain cell. But, putting my serious science hat on, I did notice a problem with the product description online. Specifically, the website states that ‘the more brain cells you have the smarter you are’ – this is not necessarily true. Note that studies of Einstein’s brain did not find any significant differences in the number of brain cells coiled in the genius’s cortex. Instead there was some speculation that Einstein’s brain contained more glial cells than neurons – these specialised cells support brain cell function, fixing them in place, keeping them supplied with oxygen and nutrients alongside many other important functions. So, perhaps we should petition Giant Microbes to make Bobby Brain Cell a new friend… Glenda Glia perhaps?

2: Euler’s Identity Romantic Geek Art

Screen Shot 2016-04-24 at 12.51.15A few years ago my partner bought this for me as a valentines present and there is nothing I don’t love about it. The text is the perfect mix of geeky and cute, plus the disclaimer he gave me when I ripped open the wrapping was so beautifully him….On opening the gift he looked at me and, with a serious expression on his face, said “I’m glad you like it but of course you do know that nothing is actually more beautiful than Euler’s Identity…and if that upsets you, you obviously don’t understand maths”. Somehow this comment made me love him more and we are now married…so, there’s another win for the geeks. If you want to check out this and similar products they can be found here.

3: Serotonin Necklace.

Screen Shot 2016-04-24 at 12.52.34For days when you need a little boost, how about wearing a little piece of happiness around your neck? This white metal neurotransmitter necklace is just the right balance of quirky and cute and will certainly get noticed – I do love wearing it around the lab! Check out this website for more products – personally I think the Dopamine necklace may also be quite rewarding (boom boom)…

4: Try Science.

Screen Shot 2016-04-24 at 12.54.02For academics and fans of the amazing xkcd this may be just the t-shirt for you. My brother-in-law bought me this for Christmas and it never fails to put a smile on my face. Actually, I’m going to admit to a bit of a crazy biologist trade secret here. Biology is one branch of science which many lament does not always follow logic… It’s not unusual to run two identical experiments on successive days and get very different results (dam you complex biological variability). This means that many biologists harbor a bit of a superstitious streak…For me I find that wearing this t-shirt always seems to bring me luck in the lab. So, if you’re having a run of bad luck, this may just be the outfit choice for you.

5: Brain specimen coasters.

Screen Shot 2016-04-24 at 12.54.48OK so I don’t currently own these, but I very much would like to – hint hint ;). I have spent many long days painstakingly mounting sections of brain tissue onto glass microscope slides with a paintbrush (no I’m not kidding this is actually how we do this) and the results always amaze me. Looking at the intricate structure of these brain slices is absolutely inspirational and I’ve often wished I could take my slides home. Sadly, knowing the cocktail of chemicals used to mount and fix these samples, I’ve always decided it was too risky to remove them from the lab. But, these coasters may be the perfect solution to this problem – put some serious thought into your morning cuppa and rest it on a slice of brain!

Post by: Sarah Fox

Dian Fossey and the ‘Gorillas in the Mist’

Dian Fossey is one of those rare biologists in that her name and work are known by a vast proportion of the general public. Nearly everybody knows of her work, perhaps by the title of the book she wrote describing her scientific career, “Gorillas in the Mist“.

Dian Fossey. Image provided via CC BY-SA 2.0 by Flickr user mary-lynn. Originally provided by ‘danisolas’

Fossey’s incredible 18-year study of Rwandan mountain gorillas and her conservation work are testament to the passion she had for her work. However, it isn’t just the work for which Fossey is best known that I wanted to draw people’s attention to in this post. Fossey’s early career also featured defining moments that many of us will recognise from our own lives and lessons from which we can learn.

Career Choices

Like many young people, Fossey took a rather meandering route to finding her ideal job. She was encouraged by her stepfather to study business at college but, after one year, she decided to foster her love of animals by switching to a pre-veterinary course. Somewhat surprisingly, given her famous career, Fossey shortly changed courses once more thanks to struggles with her Physics and Chemistry modules. After eventually completing a course in Occupational Therapy, Fossey began a career working with tuberculosis patients and then crippled children.

It wasn’t until she was 31 years old that Dian Fossey discovered her real passion. In 1963 she fulfilled a long-held dream and went travelling around Africa. There she met a pair of wildlife photographers – Joan and Alan Root – in Uganda who were photographing mountain gorillas in the Virunga mountains. It was at this point that she began to transform into the Dian Fossey we are familiar with. The Roots took her with them to watch the gorillas and, when it came time to leave, Fossey had resolved to return and learn more about the species that had so captivated her during her time there.

Many young professionals worry that they don’t know what to do with their lives. I see Fossey’s life as an encouraging reminder that even some of our most celebrated individuals only worked out what they wanted to do at a relatively late age.

Gorillas in the Virunga Mountains. Image provided via CC BY-SA 3.0 by Cai Tjeenk Willink.


During her time in Africa, Dian Fossey met archaeologist and naturalist Louis Leakey, who was funding research into the great apes at the time. When she returned home, Fossey wrote three articles about her time in Africa, which she had published in local newspaper, ‘The Courier-Journal’. Her eagerness to tell the world about this subject that so fascinated her would turn out to be a great aid in achieving her goal.

In 1966, Leakey gave a series of lectures that brought him to Fossey’s home of Louisville. Upon speaking to her again and being impressed by the articles she’d had published, Leakey invited Fossey to lead a long-term field project in Africa to study the gorillas; the only stipulation being that she would have to have her appendix removed first. Fossey willingly went ahead with the operation only the find out that Leakey had just been trying to see how enthusiastic she was about the project!

This goes to show just how much fervour for one’s work can pave the way for even greater success. Had Dian Fossey not spent her free time writing about her trip to Africa and had she not being willing to go ahead with the appendectomy, she might not have been given this life-changing opportunity. Now, I wouldn’t encourage anyone to go around offering up bodily organs in exchange for research grants, but Fossey is a prime example of how pushing yourself that bit further than other people can pay dividends in a big way.

Gorillas in the Mist

Dian Fossey was finally able to begin her studies into the mountain gorillas in early 1967. Based in the Kabara meadow in the Congo, Fossey would venture into the forests to track and observe the gorillas. Through careful study and considerable patience, she identified three distinct social groups of gorillas in the region, which she was able to get close to by mimicking their grooming, grunting and eating habits so they were more accepting of her presence.

When Fossey’s work was disrupted by a civil war in the Congo, she relocated to a national park on the Rwandan side of the mountains in September 1967. There she established the ‘Karisoke Research Centre’, naming the camp after the two volcanoes in-between which it was nestled. This move to Rwanda would eventually inspire Fossey’s famed conservation work as the gorillas in this region were under constant threat from poachers.

Laws prohibiting poaching were rarely enforced in the park, with bribery of conservation staff rife. Given her love of, and fascination with, the gorillas, it is easy to understand how Fossey was affected when she came across areas in which the apes had been slaughtered. Consequently, she financed her own team to destroy poachers’ traps and assisted in several arrests.

Fossey’s efforts protected the gorillas in her study area for a decade, whilst those outside of her protection suffered extensive poaching. Having been able to interact with some of the apes in her area, again by mimicking their actions, Fossey also grew rather attached to them; forming a particularly strong bond with a male she named Digit. Tragically, on New Year’s Eve in 1977, Digit’s group was attacked by poachers and he died protecting the other gorillas. Digit was decapitated and his hands were severed so they could be sold as ashtrays.

The Dian Fossey Gorilla Fund International. Image provided via CC BY-SA 4.0 by ‘azurfrog

In the wake of Digit’s death, Fossey set up the ‘Digit Fund’ to finance anti-poaching patrols. Now renamed in some countries, this fund still works to protect mountain gorillas and operate Fossey’s Karisoke Research Centre. In its formative years, Fossey used the fund to great effect, destroying nearly 1,000 traps in one 4 month period. The fund acts as her legacy since her untimely death in December 1985, when she was found murdered in her mountain   cabin in a case that has never been solved…

Post by: Ian Wilson

How to build a brain

4155648600_67c6ecc258_zI will always remember the moment which first sparked my interest in neuroscience. It was a rainy day in Oxford – it poured as we stepped off the bus. We had arrived at the University Department for Neuroscience. After being introduced to a group of researchers we were given an extensive tour of the facilities. As an A-level student, the visit was my first encounter with a fully functioning research lab. At its close, the visit left a resounding impression on many of us, and personally I remember becoming immediately interested in the prospect of studying neuroscience at university.

The lab was at least 15 strong, yet they continually reminded us that they were investigating a tiny piece of a puzzle which has been studied by generations of brilliant minds. The interconnection issue; how does the structure of our brain, from single neurones to complex circuits, relate to function. It was their enthusiasm for such a complex question that sparked my own interest. Whether you’re a member of the general public or an active researcher, it’s easy to forget just how amazing the brain is, either because you’re unaware of the dizzying numbers or, like me, you’ve become transfixed on understanding a small part of brain infrastructure from a very specific angle. I write this post to briefly introduce the structure of the brain to those unfamiliar with it, and to serve as a source of motivation for fellow neuroscientists who spend huge amounts of times with their heads buried in the vast sands of the field.

Let’s start with the building blocks. The human brain has about 100 billion individual neurones with an estimated 200 trillion contacts between them. Remarkably this staggering number of neurones are arranged in such a way that we can effortlessly transition from a walk to a run, respond to sensory stimuli, perceive emotions and learn complex skills such as playing an instrument.

A human neocortical pyramidal neuron stained via Golgi technique. Notice the apical dendrite extending vertically above the soma and the numerous basal dendrites radiating laterally from the base of the cell body.
A human neocortical pyramidal neuron stained via Golgi technique. Notice the apical dendrite extending vertically above the soma and the numerous basal dendrites radiating laterally from the base of the cell body.

To complicate things further, each neurone is a complex device in its own right; perhaps the most intricate cell type nature has created. Neurones are tree like cells with branching appendages that maximise the receptive surface area for connections from other neurones. To increase the cells receptive area these branched appendages, called dendrites, are covered by many spines. Yes that’s right, branches on branches. The spines accommodate between thousands and tens of thousands of postsynaptic receptors which listen for signals from other neurones.

Dendrites are the targets of thin and long processes from other neurones, called axon collaterals, which typically emerge from the cell body and take a long, convoluted journey to reach a dozen or tens of thousands of nearby and distant neurones. Terminating in close proximity to the cell body and dendrites of other neurones, axons release chemicals that modulate the postsynaptic receptors, evoking a response. This is the basis of neurone to
neurone communication.

Fluorescent micrograph showing the cerebellar network of purkinje neurons from a mouse imaged using 2-photon microscopy. The neurons are visualised by labelling the cells with green fluorescent protein (GFP). Purkinje cells are specialised neurons found in layers within the cerebellum (at the back of the brain). In humans they are one of the longest types of neurons in the brain and are involved in transmitting motor output from the cerebellum.
Fluorescent micrograph showing the cerebellar network of purkinje neurons from a mouse imaged using 2-photon microscopy. The neurons are visualised by labelling the cells with green fluorescent protein (GFP). Purkinje cells are specialised neurons found in layers within the cerebellum (at the back of the brain). In humans they are one of the longest types of neurons in the brain and are involved in transmitting motor output from the cerebellum.

Now we have met the basic structural characteristics that permit neurones to communicate with one another, let’s consider how these change between neurones. We know from detailed imaging studies that the shape and dimensions of a neurone are tailored to fit its role in the brain’s circuitry. Furthermore, different neuronal types are more strongly localised to specific areas of the brain. For example, the cerebellar Purkinje cell epitomises the link between structure and the broader function. Named after their discoverer, Czech anatomist Johann Evangelist Purkinje, these cells are amongst the largest in the brain. Their elaborate tree of dendrites makes them ideally suited to receive input from many other neurones. This is an important feature for a cell which needs a lot of incoming information to effectively coordinate the fine movement of our limbs.

Finally, I want to put aside the physical components and touch briefly on how information is encoded in the brain. Neurones produce single electro-chemical spikes, called action potentials. These electrical discharges result from rapid and well-timed ion movements across the neuronal membrane. Action potentials typically last 2-5ms however they can stretch or compress depending on the amalgamation of ion channels that are incorporated into the membrane. Neurones can repeatedly fire action potentials; the firing frequency depends on postsynaptic inputs and cascades of processes occurring within the cell.  Any given neurone may fire just one action potential per second in its resting state. However, when receiving a stimulus from another can increase this firing rate . Neurones can also produce elaborate bursting patterns of action potentials, or can be completely silent.

The brain is complex at every level of its architecture. The billions of neurones, trillions of synapses, an unimaginable number of action potentials and many flavours of ion channel all add layers to its computational capacity. Perhaps even more staggering is that all these components occupy less than a 1 litre volume inside the skull, and are somehow wired together as circuits to convert tiny fluxes of ions to organism-wide behaviours. Now a PhD student, deeply entrenched in a specific research question, I try not to lose sight of the reason I chose to study neuroscience. For me it all comes back to that rainy day in Oxford.

Post by: Adam Watson


‘Ion Channels of Excitable Membranes’ Third Edition- Bertil Hille.
‘Rhythms of the brain’- Gyӧrgy Buzsáki