What we can learn from sharks: Ancient antibodies

shark1Now I’m sure that many will agree with the statement that, at least in the literary sense of inspiring awe, sharks are awesome creatures. They are one of the apex predators in their environment, the structure of their skin at a molecular level makes them swim faster and they can constantly replenish their teeth in conveyor belt like fashion!

As creatures go the shark model is pretty old, about 420 million years old, and yet they also still have amazing complexity. Of particular interest to this article is their highly evolved – if ancient – immune system.

shark2

Strand model of an antibody, the structural heavy chains are shown in green whilst the light chains that help to form the antigen binding sites are seen in red.

Just like us a shark’s immune system is reliant on a class of proteins known as antibodies to function correctly. Antibodies are a class of protein that play a variety of different roles in the body, most notably in their recognition and immobilisation of invading pathogens. This occurs through the binding of small macromolecules, called antigens, to a special recognition site of the antibody. These are typically exposed at the surface of pathogens or else secreted by them.

This is however not the only reason many researchers are interested in antibodies. Their ability to recognise very small quantities of antigens with a high specificity makes them useful in bio sensing or as treatments to disease by binding to specific proteins thus blocking their function.

For these applications it is useful to have a large amount of such antibodies, and in fact for a lot of fields of biological research (not just immunology), antibodies are a critical reagent in many experiments.

shark3

Outline of antibody production via hybridoma cells

The typical method for producing these antibodies is to first induce their production in a model organism, such as a mouse, then extract cells from the mouse’s spleen, fuse them with a myeloma (a benign cancer cell that divides rapidly) and then use this hybrid cell (known as a hybridoma) to produce many copies of the antibody. Following this the antibodies must be carefully purified before they can be used.

This is a complicated process and fraught with difficulties, getting mice to make the right antibodies and producing the hybridoma is difficult enough for a start. A better approach is to produce recombinant antibodies by inserting DNA encoding them into model cells such as E-coli or yeast, which are much easier to handle. A big advantage here is that it is also possible to  make human antibodies, critical for any clinical work. However this synthetic approach is still tough as many recombinant antibodies are not stable enough to survive purification.

This is where the sharks come in. Sharks live in a highly saline environment, the sea, and so to avoid their bodies just shrivelling up through osmosis their bodily fluids contain high concentrations of osmolytes that prevent water moving out of their tissues. One of the major osmolytes in sharks is urea, typically at a concentration of several hundred millimolar.

Urea is a powerful denaturant and is a go to reagent for biochemists who want to study how stable a particular biomolecule is. Since shark blood contains high concentrations of urea scientists suspected that their circulating proteins, including antibodies, would be more stable than their human counterparts.

This hypothesis proved to be true however it was not just enough to know that they were more stable, they also needed to know how and why. The best way to understand the inner workings of a protein is to have an atomic resolution structure and to get that you require two things; protein crystals and x-rays.

Unfortunately making protein crystals is not so straightforward (see my earlier post on the topic), and in this case it proved impossible. Instead fragments of the complete shark antibody were crystallised and analysed by x-ray crystallography. The atomic images were then put together by researchers like a jigsaw puzzle to gain an insight into the inner workings of the antibody,

What they found is that whilst the sequence of amino acids that make up shark antibodies is very different to human antibodies, the overall shape and fold is remarkably similar. This is an example of convergent evolution, were two different species evolve the same solution to a problem independently.

shark4

Over lay of human antibody heavy-chain fragments (Red, Blue and Green) with the same region from a shark antibody (Grey)

There were however still some important differences. In particular the shark antibodies contained several extra intermolecular interactions at key points within their structure that helped to make the molecule more robust to chemical stress.

Armed with this new knowledge the researchers went one step further and modified recombinant human enzymes to now include these extra interactions to test the impact they would have on stability. Happily the stabilisation was transferrable and the modified enzymes could survive in temperatures up to 10 degrees higher than unmodified, as well as being almost twice as resistant to urea.

What was most pleasing is that the rate of secretion for the modified antibodies was vastly improved. The researchers suggested that this would likely be a boon to the antibody industry and could potentially have significant diagnostic and therapeutic application. This all goes to show that sources of scientific innovation can come from the most unlikely of places…oh and of course reinforces my point that sharks are super awesome.

SSAThis post, by author Marcus Gallagher-Jones, was kindly donated by the Scouse Science Alliance and the original text can be found here.

References

Feige, M.J. et al., 2014. The structural analysis of shark IgNAR antibodies reveals evolutionary principles of immunoglobulins. Proceedings of the National Academy of Sciences. Available at: http://www.pnas.org/content/early/2014/05/14/1321502111.abstract.

Posted in Scouse Science Allíance | Leave a comment

E-cigarettes – What’s the harm?

Portrait of woman smoking with electronic cigaretteI’ve recently noticed a wealth of articles exploring the potential for harm associated with ‘smoking’ E-Cigarettes (also known as vaping) – for a few examples see here, here and here. But, with vaping steadily on the rise* what is the bigger picture?

One thing we can all agree on is that smoking cigarettes is pretty dam bad for you; certainly, the facts and figures associated with this habit don’t make for pleasant reading…

In brief:

  • There are about one billion smokers worldwide, of whom about half will die prematurely as a direct consequence of smoking.
  • Smoking currently accounts for around 100,000, or about one in six, deaths each year in the UK.
  • Smoking causes around 85% of the approximately 40,000 cases of (and deaths from) lung cancer in the UK each year. What’s more, smoking also contributes to the development of many other cancers, including oral cavity cancer, oesophageal and gastric cancer, kidney and bladder cancers, and pancreatic cancer.

…for more startling stats see here.

With this in mind, it’s worth noting that electronic cigarettes have traditionally been marketed as a ‘less harmful’ alternative to smoking and, in some cases, a stepping stone on the path to quitting the habit entirely. But what are they, what are the associated risks and are they really safer than conventional cigarettes?

image2Electronic cigarettes are designed to provide a measured dose of inhaled nicotine, whilst also mimicking the experience of smoking a conventional cigarette. Early models looked almost identical to normal cigarettes, with most even incorporating a realistic glowing tip. However, newer products come in all kinds of shape and sizes.

The most important difference between e-cigarettes and the real deal is the method of nicotine delivery. A regular cigarette burns tobacco and the user inhales the resulting nicotine-rich smoke, along with any associated nasties. E-cigarettes, however, produce a vapour by heating a solution of nicotine mixed with propylene glycol or glycerine. This method of nicotine delivery means that users still get the desired effect from the vapour but, without many of the toxic side effects associated with cigarette smoke.

It is now widely accepted that nicotine itself carries no serious health implications and is likely to be no more harmful than caffeine (for studies see here, here and here). The main problem with cigarettes is that they deliver their nicotine hit alongside a staggering array of carcinogens and toxins. These include: nitrosamines, acetone, acetylene, DDT, lead, radioactive polonium, hydrogen cyanide, methanol, arsenic and cadmium and vapour phase toxins such as carbon monoxide.

Since e-cigarettes do not burn tobacco, they do not deliver such a large doses of associated nasties. However, this does not mean that they’re harmless. Studies reveal that e-cigarettes contain small amounts of formaldehyde and acetaldehyde (both known human carcinogens); they can also deliver trace levels of carcinogenic nitrosamines, and some toxic metals such as cadmium, nickel and lead. A quick scan of the literature suggests that levels of these substances can vary hugely between e-cig brands, however, most studies agree that levels are generally low and are almost always significantly below those delivered by traditional cigarettes. Also, unlike traditional cigarette smoke, there appears to be little harm in the passive inhalation of vapour.

So at this point the case for e-cigarettes looks pretty strong. We know that smoking kills and that, without intervention, millions of smokers alive today will die of smoking-related illnesses. Despite being new to the market and lacking the long term research which can only come from an established product, e-cigarettes certainly seem significantly safer than their conventional cousins. Therefore, it is likely that making the switch from smoke to vapour is going to be pretty beneficial for your health.

This said, I don’t think we should be complacent with vaping and it certainly shouldn’t be marketed as ‘harmless’. It is important that legislations be formulated to standardise the mechanics of vaporisers and the content of e-liquids – particularly since studies have found products to vary widely in both their toxicity and nicotine delivery. Advertising must also be approached with caution. Critics of e-cigarettes have suggested that vaping may become a gateway for youngsters into smoking. Although there is currently no grounding to these fears, it is important that vaping is not glamorized in the media – it is not a harmless practice and should only be used by those already addicted to nicotine who want to improve their health by quitting smoking.

So, although we may have discovered smoke without fire there is no guarantee we won’t still get burned…

Post by: Sarah Fox

* Action on Smoking and Health (ASH) has estimated that currently about 1.3 million people in the UK use electronic cigarettes, and around 400,000 people have completely replaced smoking with electronic cigarettes (for link see here).

Posted in Sarah Fox | 15 Comments

Schizophrenia: setting the misconceptions straight

I’m not going to lie, I do enjoy films like ‘Fight Club’ and ‘Me, Myself and Irene’, and I agree that ‘Dr Jekyll and Mr Hyde’ is a classic novel which should be read by all. image1But putting entertainment aside, presenting those with schizophrenia as violent individuals with split personalities does not help public understanding of the illness. Such widely believed misconceptions are only amplified further by the media. A prime example was the recent story in The DailyMail about a paranoid schizophrenic who murdered a young man. The paper nicknamed the perpetrator the ‘cannibal killer’; a catchy title which leaves no doubt in the reader’s mind that individuals with schizophrenia are a danger to others. But these views are both mistaken and highly damaging to the 21 million individuals living with schizophrenia around the world today. Hopefully the evidence presented here can go a little way towards dispelling these misconceptions.

Misconception number 1: people with schizophrenia have a split personality

The most common misconception about schizophrenia is that people with the illness have a split personality; that is, they may be their normal selves one minute and then seem like a completely different person the next. In a survey carried out by the National Alliance on Mental Illness (NAMI), 64% of Americans said that they share this belief.

image2However, what people are actually describing when they talk about a split personality is a condition known as dissociative identity disorder (DID; previously multiple personality disorder). People with DID generally present with around 13–15 different personalities and, in some cases, have even been known to have up to 100! Those with schizophrenia, on the other hand, tend to suffer from hallucinations and paranoia, often hearing voices or believing that someone is ‘out to get them’. The two conditions are very different and should not be confused.

Of course, this misunderstanding is not helped by fact that the term ‘schizophrenia’ means ‘split mind’ in Greek. The name was, however, coined a long time ago, before the symptoms of schizophrenia were properly understood. A significant number of experts in the illness now believe this term is inappropriate and agree that schizophrenia should be renamed.

Misconception number 2: all people with schizophrenia are violent

The belief that all people who suffer from schizophrenia are violent is another widely held misconception. Going back to NAMI’s survey, around 60% of Americans identified violent behaviour as a symptom of schizophrenia. Why is this the case?

Putting aside the obvious influence of films and media, there are studies which have found a correlation between mental illness and violence. Swanson, for instance, concluded in his 1994 study that those with a mental illness, including schizophrenia, were twice as likely to be violent as the general population. This correlation, however, could be explained by the presence of co-existing substance abuse, rather than the mental illness itself. In fact, only 7% of the individuals in the study who had a mental illness but did not use drugs had shown violent behaviour.

Stignorance StickerMore recent investigations by Swanson (2002) and Elbogen (2009) further support the argument that factors other than mental illness may predispose an individual to violence. These studies found that, apart from substance abuse, factors associated with violence in the mentally ill included homelessness, physical abuse and unemployment. Mental illness alone was found to be unrelated to violence and those without any co-existing risk factors were no more likely to be violent than someone from the general population.

On the same topic, the belief that individuals with schizophrenia are violent towards others is not necessarily the case either. In fact, people with schizophrenia are more likely to hurt themselves than those around them, having an 8.5 fold higher suicide risk than the general population.

This is certainly not the first article hoping to dispel the misconceptions that people with schizophrenia are violent or have a split personality, nor will it be the last. But with popular films, such as ‘Fight Club’ and ‘Me, Myself and Irene’, and headline news stories reinforcing these misperceptions, it’s going to take a lot of work to change public view of schizophrenia. Perhaps the introduction of a new name could help dissociate schizophrenia from these stereotypical portrayals, allowing us to be entertained by stories like ‘Fight Club’ or ‘Dr Jekyll and Mr Hyde’, without letting them shape an inaccurate public perception of a mental illness.

Post by: Megan Barrett

Posted in Megan Barrett | 1 Comment

‘What are you looking at?’: The science of facial pareidolia

image1 copy 2As a child, much to my parents’ confusion, I had the uncanny ability to see faces in everyday patterns and objects. Yes, my circle of friends soon extended well beyond the confines of the playground, covering cloud formations, leaves, coffee stains and my personal favourite, a wise old man who stared knowingly down from a rip in my bedroom wallpaper. This peculiarity was put down to the fact that I was  an only child with a particularly overactive imagination. However, the ability has never left me and these illusionary faces often still pop up from time to time…although I now rarely try and engage them in conversation.

Therefore, I was quite interested to find that this phenomenon, known as facial pareidolia, is actually quite common. It is also the subject of a recent research paper entitled: ‘Seeing Jesus in Toast: Neural and behavioural correlates of face pareidolia’, which won its authors an Ig Nobel prize*. This paper explores how pareidolias (both facial and otherwise) can be used to understand the way our brains process information and how our sensory experiences often incorporate more than meets the eye.

We all know that our sensory experiences (vision, olfaction, touch etc) begin life in our sensory organs (eyes, nose, fingertips etc). Once a sensation is detected, this travels to the brain, where it is processed into a multi-sensory experience. However, we are not just passive sensors, like a camera. Instead our sensations are often coloured by internal processes, such as mood, expectation or attention. This ‘colouring’ is known as top-down modulation and can be a particularly personal experience (think of the Rorschach ‘inkblot’ test). Facial pareidolia is a good example of top-down modulation since: our sensory organs are simply experiencing a random pattern of input (such as a cloud formation or coffee stain), and something else causes us to give this input a more familiar or meaningful interpretation – in this case a face.

The study described in ‘Seeing Jesus in Toast’ investigated which brain regions were active when participants experienced pareidolia for either faces or letters. Specifically, brain activity was monitored while subjects viewed one of five different categories of images:

1) obvious faces (image: A)

2) hard-to-detect faces (image: B)

3) obvious letters (image: C)

4) hard-to-detect letters (image: D)

5) pure noise – no face or letter (image: E).

image2 copy 2

Participants were told that the images they were being shown could  contain either faces or letters and were asked to decide which pictures actually showed this hidden imagery. To ensure that all participants experienced pareidolia, the pesky researchers deliberately made sure that this task was really tricky.

What they discovered was that their subjects were a pretty suggestible bunch. Those who expected to see faces often spied a pair of eyes peering out at them from the pure noise stimuli, while those who were looking for letters often saw just that. .

From this work, the researchers were able to identify a network of crafty brain regions which seemed to be specifically responsible for tricking us into seeing illusory faces. They suggested that when we expect to see a face, regions of the brain responsible for decision making and facial recognition (such as the prefrontal cortex) shout commands down to regions that process more basic elements of images  ( in this case a region known as the right fusiform face area). Such a shut forces the ‘lower’ areas to incorrectly interpret a noisy image as containing a face. Put simply, if the brain is expecting to see a face it can alter the way we interpret visual information and make us see things which aren’t actually there.

drawingInterestingly, not all noisy images were incorrectly interpreted as showing faces. In fact, when the researchers took a closer look and compared noisy images which were mistaken for faces with those which were not, they found that these did actually contain patterns which looked a bit like faces. Take a good long squint at the image below (showing a noisy image mistaken for a face) and, at least to me, it’s easy to see two eyes a nose and an open mouth.

The researchers suggest that the system responsible for seeing faces popping out of highly ambiguous visual information may actually be adaptive. Specifically, they say “The tendency to detect faces in ambiguous visual information is perhaps highly adaptive given the supreme importance of faces in our social life and the high cost resulting from failure to detect a true face”. So, it appears that not only is seeing faces perfectly normal, but it may even be a socially adaptive trait. I guess that means I’m not really crazy and neither is this woman

Post by: Sarah Fox

* The Ig Nobel Prizes honor achievements that make people laugh, and then make them think and include a huge range of fascinating research. If you’ve not already heard of them I strongly recommend you have a browse through their website (here).

Posted in Sarah Fox | 1 Comment

Solipsism, Sympathy, and the Connection of Minds

image1Human beings often share the desire to reach out and connect to others, to feel part of a community, to understand and to be understood. In fact, understanding and empathy  underpin a peaceful and productive society, and connecting with others can provide a sense of purpose and meaning. It is this connection of minds that has long been a topic of fascination.

The early-modern philosophers such as Descartes and Wittgenstein introduced the philosophical notion of solipsism, taken from the Latin solus, meaning “alone”, and ipse, meaning “self”. Solipsism can be defined as “the view or theory that the self is all that can be known to exist”. Hence, philosophers of a solipsistic persuasion questioned the very existence of other minds.

This question has been scientifically investigated by psychologists interested in  the Theory of Mind (or ToM). The term was coined by  Premack and Woodruff (1978), who studied chimpanzees.  They inferred from their investigations that chimps could attribute intentions and desires to others (human actors), showing that they understood the concept of another mind. Human research suggests that ToM develops around the age of 5 or earlier, when children can understand that other people have different desires, thoughts, and feelings to their own.

But if the mind can conceive of another mind, how does this occur, and what evidence do we have to challenge the solipsism of Descartes and Wittgenstein?

image2The answers lie in the advancement of technology and neuroscience. Dr Giacomo Rizzolatti recorded electrical activity from the brain of a monkey whilst they performed a specific action (grasping an object) – so far nothing exceptional. However, the same electrical activity in the monkey’s brain was generated when the animal  observed another person performing the same action. This suggested that the monkey understood the action to be the same as its own, demonstrating a kind of ‘sympathy’. The cells responsible for this understanding of another’s actions were termed ‘mirror neurons’, due to the obvious connection with mirroring another’s behaviour.

So far it seems that we can theorise about another’s mind, and that the explanation of understanding another’s actions can be (at least partly) explained by mirror neurons, but the possibility of the connection of minds is yet to be proven.

… Or is it? Earlier this year, a group of scientists from Spain, France and the U.S.A documented what they term ‘conscious brain-to-brain communication’. Grau and colleagues recruited participants in two distant locations, one to be the ‘emitter’ – the person who generated the message to communicate; and one to be the ‘receiver’. The emitter thought of a word, which was represented as a binary code of ‘1’s and ‘0’s. The ‘1’s and ‘0’s were recorded from the brain of the emitter using motor imagery: if the emitter wished to communicate a ‘1’ they imagined an action with their hands, for a ‘0’ they imagined an action with their feet. The electrical activity from the scalp over the brain areas relating to the actions of hands and feet was recorded with  electroencephalography. Computers transformed this electrical activity back to binary code for transmission via the internet to the location of the receiver. A computer at this location received the binary code and relayed it to the person designated as the receiver. The receiver experienced the ‘1’s and ‘0’s via   a magnetic field applied to the brain through the scalp (transcranial magnetic stimulation or TMS). If the digit of code to be conveyed was a ‘1’ the researchers  stimulated the part of the brain responsible for vision, and this made the receiver think they were seeing a light.

If the digit to be conveyed was a ‘0’ the computer positioned the magnetic stimulation over a different part of the brain which resulted in the omission of a light. Therefore, the receiver could communicate the code of ‘1’s and ‘0’s based on the presence and omission of lights. The transmitted word could be  deciphered, completing the brain-to-brain communication.

image3

Although perhaps not what Descartes and Wittgenstein had in mind when they questioned the existence of other minds, modern technology has helped us to explore, explain and expand our means of communication with some truly fascinating results.

Post by: Gemma Barnacle

References:

Original article by Grau and colleagues: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0105225

Interview with Rizzolatti on the discovery of mirror neurons: http://www.gocognitive.net/interviews/discovery-mirror-neurons-1

Posted in Gemma Barnacle | Leave a comment

The secret life of Robin Redbreast:

4476290531_fb6bcf3665_zWith the holiday season now in full swing, the unseasonable warmth leading up to Christmas 2014 got me thinking about what really make Christmas Christmas? For me the season just wouldn’t be complete without terrible television re-runs, twinkling Christmas lights, indulgent hot chocolate and a curious robin hopping expectantly round the garden as you bed it down for winter. Yes, as far back as I can remember these canny little birds have been as much a part of Christmas as the tree or the turkey. But, how much do we really know about our festive feathered friends and just how did they become such a mainstay of the holiday season? So as a late Christmas present, here is a collection of robin facts to get you a bit better acquainted with our friendly robin redbreast (Erithacus rubecula):

A red breasted mail carrier: Robins, with their bright red breasts, curious nature and friendly disposition have earned themselves the title of UK’s favourite bird. But, as a year round mainstay of the British garden, how did these birds also become one of the most iconic symbols of Christmas.

332693283_c6cc63805a_oIt is thought that the robin leant it’s name to mail carriers or postmen of the early to mid1800s. During this period postmen wore a distinctive scarlet uniform, earning them the nickname ‘redbreasts’. Around Christmas the ‘redbreast’ army was strong on the ground, spreading festive cheer and mailing our seasonal greetings; and, it wasn’t long before the postmen’s namesake the robin started making an appearance on the cards they were delivering (often depicted with letters in their beaks). This and the robins regular presence in the winter garden, has earned them a role in festive history.

Night singing: It seems that not only has the humble robin had a significant effect on our lives, but, in turn, we are also affecting theirs. Researchers have recently discovered that many urban birds, including the robin, have taken to singing at night – a pretty unusual behaviour for these diurnal creatures. But, what could cause these unusual nocturnal outbursts?

Two main theories predominate the scientific literature. The first theory being that artificial lights in major human settlements confuse the birds into mistaking night for day, messing up their circadian clock and leading to this noisy nighttime behaviour. While a second theory proposes that this ‘night singing’ is actually a coping strategy used by birds in response to their noisy urban homes – to ensure they sing at times when they are guaranteed to be heard above the din of the city. Indeed, a study carried out in Sheffield found that robins nesting in louder areas of the city were more likely to sing at night than their more rural cousins. Although the jury is still out on which theory will win, one thing which seems certain is that robins are adapting to life alongside us.

Territory and aggression: One fact few people know about our friend robin redbreast 6824704107_9c476b6585_zis that in reality this feisty little fellow is far from the picture of peace and serenity we see on Christmas cards. Indeed, scientists have found that robins are, in fact, fiercely territorial and have been known to violently attack other robins who stray into their territory – especially in the winter months when food is scarce! Indeed, the birds iconic red breast is not used, as you may suspect, to attract a mate, but is actually war paint. Like a red rag to a bull, the territorial robin has been known to attack anything red and feathery which happens to appear in its territory.

However, there are exceptions to this rule. This year I have been watching a pair of robins foraging in my garden and it appears that these birds are pretty comfortable with each others company. Perhaps it’s the relative abundance of food left over by the mild winter which has sparked the social flame between my birds. However it is also possible that these birds are a pair. Both female and male robins sport the same red breast so, to us, are almost indistinguishable. Pairs of birds have been known to share territory and cooperate over the winter months, so perhaps I have a festive love story infolding in my garden this winter.

1965357845_f72c2e1632_zHuman interaction: Although robins don’t always play nicely together, when it comes to their interactions with us they certainly know which side their bread is buttered. Anyone who has turned over soil in their garden is likely to have noticed these worm-loving birds hovering close by, waiting to collect the wriggly spoils of the newly turned soil. Some patient individuals have even been able to exploit the trusting and curious nature of robins, ultimately encouraging birds to eat directly out of their hands – something I’d certainly like to try.

So now we know a little bit more about our feathered Christmas companions and hopefully have a better understanding of this enigmatic and iconic garden visitor.

Post by: Sarah fox.

Posted in Sarah Fox | Leave a comment

Compassion, intuition and bonding, or why those with less give more

image1Christmas is a time to exchange gifts with friends and family. Those of us who haven’t completed their shopping yet will frantically try to do so within the next couple of days. This time of year is not, however, only about giving to our loved ones. Historically, Christmas has always been associated with good will and giving, not just to those we know, but to anyone in need. But, why do we do it and is giving something that only benefits the receivers?

Scientists have known for a while that helping others goes hand in hand with longer life and better health. Such improved well-being could be a result of the ‘stress-buffering’ effect of giving. For example, providing help improves our mood and caring for others is accompanied by the release of feel-good hormones (such as oxitocin and prolactin) and natural opioids. Indeed, older people who dedicate time to helping others, tend to cope much better with stressful life events such as illness, financial difficulties or death of a loved one.

image2We know that people on the lower end of the income ladder tend to give a greater proportion of their income to charities than the wealthy. Scientists have also found that people from lower social ranks are more generous towards strangers in distress and often have more trust in others. Considering that they have fewer resources, experience more daily stress and live in a more threatening environment, this seems like a paradox. There is, however, logic behind such charitable behaviour. Since people with lower incomes are less independent and have less control over their lives, they tend to rely more on others. Such interdependency encourages individuals to form stronger social bonds and makes us more attuned to the needs of others. It is these social connections that buffer those less affluent from stress, therefore encouraging them to invest more in their bonds with others.

Would it then be possible to increase empathy in order to encourage people to help others? It appears that the starting point in this process is self-compassion. Writing about a value that is important to us makes us feel more sympathy and love towards ourselves. As a result, we feel less threatened by others, less vulnerable to criticism and more inclined to be charitable.

Another psychological experience that affects giving is the use of intuition versus deliberation. It seems that the more we rely on intuition in decision making, the more cooperative our actions are. Intuitive thinking is faster and more emotional than rational deliberation and the more time we take to reflect, the more selfish our decisions become. Logic is cold indeed!

Does this mean that we are naturally generous, but that overthinking can cause us to override this instinct? Well, this could depend on the amount of cooperation required in our daily lives. We usually interact with the same people on a daily basis and, since we value our reputation, we try our best to maintain good relationship with these people. Perhaps this is particularly true if we are of lower social rank and therefore, more dependent on others. No wonder our automatic reaction would be to cooperate.

Does this mean we should rely on our generous intuition and  not spend too much time thinking about what to get our loved ones this Christmas? We can’t say; but, whatever we choose to do this year, what better time than the festive season to increase our bonds with others and help those in need?

Post by Jadwiga Nazimek

References:

Lindsay, E.K., Creswell, J.D. (2014) Helping the self help others: self-affirmation increases self-compassion and pro-social behaviors. Frontiers in Psychology 5: 1-9. http://journal.frontiersin.org/Journal/10.3389/fpsyg.2014.00421/full

Pulin, M.J., Brown, S.L., Dillard, A., Smith, D.M. (2013) Giving to Others and the Association Between Stress and Mortality. American Journal of Public Health 103: 1649-1655.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3780662/

http://www.medicalnewstoday.com/articles/256062.php

Piff, P.K., Kraus, M.W., Cote, S., Cheng, B.H., Keltner, D. (2010) Having Less, Giving More: The Influence of Social Class on Prosocial Behavior. Journal of Personality and Social Psychology 99 (5) 771–784.

http://www-2.rotman.utoronto.ca/phd/file/Piffetal.pdf

Rand, D.G., Greene, J.D., Nowak, M.A. (2012) Spontaneous giving and calculated greed
Nature 489: 427-430.

http://decisionlab.harvard.edu/_content/research/papers/Greene_Rand_and_Nowak_Spontaneous_Giving_Calculated_Greed.pdf

Posted in Jadwiga Nazimek | Leave a comment