A brief history of getting your groove on:

6975100728_d9edb36f91_zWhether you’re a fan of classical quartets or acid house, one thing is certain; we all love a good tune! Music has the amazing ability to drive our emotions, bring people together and encourage us to dance till dawn. But why should this be the case? It’s easy to understand how pleasure can be derived from food and sex and why bereavement makes us sad. But, what is so special about music? The ability to write a good tune has no evolutionary advantage….or does it?

Novel research from our own fair city (Manchester) is now combining evolutionary biology, physics and neuroscience in an attempt to uncover the mysteries of music and its effect on the brain. This work, led by academic and musician Dr. Neil Todd, has uncovered a biological pathway linking sound, movement and pleasure in the brain. This pathway may have remained elusive for so many years because of its unusual origins. Neil has found evidence that, contrary to the traditional textbook theories, the cochlea is not the only sensory organ in the inner ear capable of responding to sound. His research suggests that the vestibular apparatus, normally associated with balance and spatial orientation, is also sensitive to certain frequencies of sound.

ROSERENASSThis may seem like a kooky idea but, viewed from an evolutionary standpoint, it actually makes perfect sense. In mammalian anatomy, we know that the cochlea is responsible for perception of sound. But, looking back down the evolutionary scale we find that this organ is not always present. Taking bony fish as an example, we find no sign of a cochlea. But, fish are far from deaf; in fact they use their otolith organs (part of the vestibular system) to detect vibrations. Similar to the human cochlea, the fish otolith organ contains an array of tiny hair-cells which can detect vibrations and translate these into a sensation of sound. Alongside fish, there are also many further examples of creatures utilising their vestibular sensors as sound detectors. So, there’s certainly evolutionary precedence for a mammalian vestibular sound processor. But, can humans use this system to perceive sound and, if so, why might this be advantageous?

Using electrodes which measured electrical signals from the neck and eyes (specifically from muscles responsive to vestibular activation). Neil found that the human vestibular system was sensitive to air-conducted sound frequencies ranging from 50-1000Hz, peaking between 300 and 350Hz – just above middle C on a musical scale and a similar frequency to male and female voices. For head vibration the peak sensitivity is even lower, at around 100 Hz. Taking this work one step further, Neil’s group wired up a number of participants looking at electrical activity in the brain and vestibular activated neck/eye muscles simultaneously. This method enabled the group to discern how responses in the brain differed between sounds which activated the vestibular system and those which didn’t. It was discovered that sounds falling within vestibular-activating frequency bands caused activity in auditory cortex and cingulate limbic areas, as well as sub-cortical areas traditionally associated with vestibular activation. This strongly suggests that certain sounds can indeed activate the human vestibular system, but why might this be useful?

Once again peering back through our evolutionary past, we find that many creatures use vestibular-activating sounds as mating signals. Have you ever heard a fish sing? Well, he may not get a turn from the judges on ‘the Voice’, but the male Haddock is one of the most vocal of fish and he uses his alluring voice to snag himself a mate. Male haddock vocalise by drumming on their swim bladder and, if surrounding females, are charmed by this song the music can cause both fish to simultaneously release eggs and sperm. Again, it seems that many creatures use this sense when finding a mate, and many also accompany this behaviour with a kind of dance. Therefore, it is possible that the vestibular sound-sensing system represents an ancient pathway used in mating behaviour – perhaps similar to the recently discovered vomeronasal system used to choose a mate based on pheromones and smell.

6307084759_7527ac5fef_zSo, perhaps our love of music and the intoxicating atmosphere of nightclubs could be the upshot of an ancient evolutionary system linked with fundamental mating behaviour.

Post by: Sarah Fox

Posted in Sarah Fox | Leave a comment

Are all owls really nocturnal? : And other common misconceptions about owls

We’ve all been brought up (particularly in the UK) with common myths about owls; they all say ‘twit twoo’, they can turn their heads all the way round, they’re all nocturnal and of course that they are the wisest of all creatures. But how many of these are actually true?

If you ask any child or even an adult what sound an owl makes they will answer with ‘twit twoo’, and how they sometimes hear the noise of the owl down a quiet dark country lane at night. Firstly, the only owl that says ‘twit twoo’ is the tawny owl, Strix aluco, and it’s actually a breeding pair, the male emitting the ‘twit’ and the female the ‘twoo’ sound. However, the tawny owl, one of five recognised and protected British owl species (along with the barn owl, the little owl, the long eared owl and the short eared owl) is the most common of all the owl species in this country, so the chances of you hearing the ‘twit twoo’ sound is much more likely than hearing the screech of the barn owl for example.

How about the myth that they can turn their heads all the way around, or as a little girl once told me ‘they can turn their heads around and around and around…’? I’m afraid the truth is if this was the case the owl would choke or its head would fall off! However, owls can turn their heads up to 270 degrees each way (left or right) and 180 degrees upwards, and they do this by having twice as many vertebrae in their neck than mammals do. But why do they do this? Having such large eyes means that their eye sockets are fixed in their skull, so unlike us they can’t look left or right by just moving their eyes. Instead owls have to move their whole head to focus their eyes on their prey.

Next, the common thought that all owls are nocturnal. Again a myth I’m afraid. Although about 60% of all owl species are nocturnal, the rest are diurnal (active during the day) or crepuscular (active at dawn and dusk). Interestingly, you can actually figure out when each species of owl is most active by simply looking at their eyes. If they have black eyes they’re nocturnal, if they have yellow eyes they’re diurnal and if they have orange eyes they are a crepuscular species (see figure 1). Pretty neat, right?

Screen Shot 2015-03-08 at 14.16.13

Figure 1: A) snowy owl (Bubo scandiacus) with yellow eyes is a diurnal species, B) European eagle owl (Bubo bubo) with orange eyes is a crepuscular species and B)Tawny owl (Strix aluco) with black eyes is a nocturnal species

Finally, the myth of the wise old owl has existed for thousands of years, ever since people worshipped the Greek goddess of wisdom, Athena, who had a pet owl (see figure 2). Clearly people assumed that if Athena was wise, owls must be too. This myth has continued into modern culture with characters such as ‘Owl’ in Winnie the Pooh and ‘Archimedes’ the owl in The Sword in the Stone (great film though :D). The truth is owls are clever when it comes to hunting, but really that’s all they need to be able to do. They don’t need to figure out the answers to a crossword puzzle like we might try to do, or decipher the instructions to microwave a meal, they need to hunt and they’re very good at it. The reason for the case that owls are not ‘wise’ is because underneath all the fluff and feathers they have a skull the size of a golf ball and inside a brain about the size of a 5p coin; one third is used for eyesight, one third for hearing and one third for general thinking. So, although most of what you thought you knew about owls may not actually be true, I’m sure you agree they are still incredibly fascinating creatures.

SSA4

Figure 2: The owl of Athena

This post, by author Alice Maher, was kindly donated by the Scouse Science Alliance and the original text can be found here.

Posted in Scouse Science Allíance | Leave a comment

The X-Club

Upon first hearing of ‘The X-Club’ you probably imagine a group of superhumans, responsible for saving the free world from some terrible intergalactic catastrophe. However, they were in reality a group of Victorian scientists that were instead responsible for saving the UK from scientific ambivalence, arguably the more impressive of the two feats.

The Original X-Club

The Original X-Club

Among The X-Club’s nine members were the brilliant biologist T.H. Huxley, the prodigious physicist John Tyndall, and the spectacular sociologist Herbert Spencer. All of the members were driven by a conscious decision to rail against the traditions of the church-driven scientific agenda, claiming cultural leadership for the scientists of the day. As well as campaigning vigorously for the evolutionary theories of Charles Darwin (more of which here), they also solicited government support for science, procured jobs for scientists and were instrumental in demanding that science be taught at every educational level.

As well as being brilliant scientists in their own right, these Victorian gentlemen were also outstanding communicators, utilising a variety of media to explain science to a range of different audiences. Amongst other activities, they wrote textbooks, contributed to scientific journals, gave popular lectures and advised politicians. In short, they were science communicators extraordinaire, laying the foundations for the relatively egalitarian environment in which we as scientists now operate. Superhumans they may not have been, but that only serves to make what they achieved all the more remarkable.

The original X-Club had a total of nine members, who were active from 1864 to 1892. In the spirit of this original troupe I now offer the following members for consideration into ‘The XX-Club’, so called because they now welcome into their ranks three female members:

Professor Brian Cox AKA ‘The Dream’

Sir Tim Berners-Lee AKA ‘The Web’

Professor Nancy Rothwell AKA ‘The Balance’

Professor Richard Dawkins AKA ‘The Watchmaker’

Baron Robert Winston AKA ‘The Body’

Dame (Susan) Jocelyn Bell Burnell AKA ‘The Pulse’

Sir David Attenborough AKA ‘The Silver Back’

Baroness Susan Adele Greenfield AKA ‘The Brain’

Professor Stephen Hawking AKA ‘The Fourth Dimension’

My only criteria for selection were that these were scientists who were well known for both their research and also the promotion of their field to the general public. In keeping with the original X-Club, I also limited my selection to those scientists currently working in the UK.

Looking at this selection it is interesting to see that it is fairly dominated by physicists, with a third of the members conducting research primarily in that area. Whilst I admit that part of this might be to do with my own background (MPhys in Physics with Space Science and Technology, PhD in Atmospheric Physics), I also think that it reflects the zeitgeist of the current popularisation of science. Just as the dominance of the original X-Club by evolutionary biologists (three of the nine members were practitioners of either Natural History or Natural Philosophy) reflected the prevalence of Darwinism in the psyche of the public consciousness, so too does the make-up of The XX-Club mirror today’s fascination with the exploration of the very large (via space exploration) and the very small (via particle colliders). Whether or not that is a case of cause or effect is a debate for another day. For now, let’s just marvel at the quality of the current crop of science communicators that make such a debate possible.

Post by: Sam Illingworth

Posted in Sam Illingworth | 1 Comment

Neurofeedback – or how the mind trains the brain

There is no lack of advertisements  for devices, games and tasks that are meant to train our thinking and memory, just as exercise trains muscle. And, wouldn’t it  be great if we could increase our brain power like Lucy in Luc Besson’s movie? Whilst the claim that we ‘underuse’ our brains is controversial, scientists are developing techniques which allow us to regulate our own brain activity and improve our performance.

image1

Image courtesy of ddpavumba at FreeDigitalPhotos.net

Neurofeedback has been around for a while and has developed in ways that fill us with enthusiasm and hope. It involves a brain-machine interface which measures brain activity and provides the participant with real-time feedback. The feedback might take the form of coloured shapes shown on the screen, with colours ranging from blue (low activity) to red (high activity). Depending on the task, participants are instructed to change the colour of the square using only their mind. For example, if the aim of the training is to increase activity in a part of the brain, participants need to try to change the colour of the square to red. If the aim is to decrease activity, they should aim try to turn it blue. Often it is up to the participants how they achieve the change in colour – as long as it works, it doesn’t matter!

This fun-sounding method of training our brain can improve our ability to think, often impaired in depression. Such difficulties include problems with working memory, i.e. holding and manipulating several pieces of information at the same time. In a study which used EEG to measure electrical activity of the brain, after eight training sessions patients with depression were better at the tasks that required working memory than patients who were not trained. They were also able to think faster.

Another target for neurofeedback training is the ability to regulate our feelings. A small part deep in the brain, called the amygdala, plays a major role in emotions. In people with depression and anxiety, the amygdala is hyperactive and its responses to sad objects or events can be exaggerated. This activity can normalize after therapy, however the treatment sometimes takes a long time.  Is it possible to speed up the process with the use of neurofeedback training?  Researchers scanned the brains of healthy participants (using fMRI) whilst presenting them faces with negative emotional expressions. Such images usually increase activity in the amygdala. Here too, participants saw the activity in the emotional center of their brain as colours. In this case, however, they used more specific strategies to reduce the activity in their right amygdala, which included thinking: ‘these are pictures, this is a study, these are actors’, or by distracting themselves. After 4 training sessions they were much better at down-regulating the activity in their brains than the participants who just looked at the faces without the instructions.

The task and the colour scheme of the feedback on the activity in the amygdala.  Brühl, AB. et al. (2014) Real-time Neurofeedback Using Functional MRI Could Improve Down-Regulation of Amygdala Activity During Emotional Stimulation: A Proof-of-Concept Study. Brain Topography 27:138–148.

The task and the colour scheme of the feedback on the activity in the amygdala.
Brühl, AB. et al. (2014) Real-time Neurofeedback Using Functional MRI Could Improve
Down-Regulation of Amygdala Activity During Emotional Stimulation: A Proof-of-Concept Study. Brain Topography 27:138–148.

Perhaps one day the standard treatment for mental illness will include scanning peoples’ heads and providing them with online feedback. Would it not be great if we could regulate activity in our own brains? Only, who is regulating who exactly? Neurofeedback certainly gives a different meaning to the expression “mind over matter”…

Post by: Jadwiga Nazimek

Posted in Jadwiga Nazimek | 7 Comments

Getting older, getting wiser?

For some of us the New Year was  the time to reflect on past experiences, and to consider  what we have learned from them. Have we become wiser or more mature? Have these lessons helped us to live the rest of our lives as better and happier individuals? Many of us would like to think so, but what does it actually mean to be ‘more mature’, and does wisdom really come with age?

Maturity can offer greater contentment and satisfaction.  Image courtesy of Dr Joseph Valks at FreeDigitalPhotos.net

Maturity can offer greater contentment and satisfaction. Image courtesy of Dr Joseph Valks at FreeDigitalPhotos.net

Psychology offers various views on personal maturity. Some researchers understand it as personal growth, i.e. the development of our personality as we acquire deeper knowledge of ourselves, connect to others, and become more able to express ourselves.

How much can our personality change as we mature? McAdams (1996) proposes that there are different levels in personality: dispositional traits, personal concerns and self-concepts. The main traits of our personality consist of five broad dimensions: extraversion, neuroticism, conscientiousness, agreeableness and openness to experience. For example, some of us are extraverts, others – introverts, we also differ in our degree of conscientiousness. The second level of personality includes our goals, life tasks, motivations and plans. Finally, our identity, or how we see ourselves and our past, present and future form the third tier of personality. These basic traits do not tend to change. However, our personal concerns and goals do, depending on where we are in life.

Mature people are more able to express themselves in their goals and focus more on connections with others. Image courtesy of khunaspix at FreeDigitalPhotos.net

Mature people are more able to express themselves in their goals and focus more on connections with others. Image courtesy of khunaspix at FreeDigitalPhotos.net

Research by Sheldon and Kasser (2001) showed that as we mature we set ourselves goals that better fulfill our psychological needs, i.e. the need for self-acceptance, to further develop connections  with others that are close to us, and to contribute to the community. These new goals replace those with external motivations, such as popularity or financial status. Moreover, we learn to pursue these goals because we truly believe in their value, rather due to the pressures of our  societies or cultures.

Maturity can also be defined as becoming more adept at regulating our emotions and to experience more positive feelings, which in turn is related to finding meaning in life. All of us regulate our emotions by influencing the way we feel about other people or events, e.g. cheering ourselves up by giving ourselves a treat when we feel low, or calming ourselves down when we get anxious. Better regulation of our emotions also helps us to achieve goals, by protecting us from becoming easily discouraged. Whilst maturity does not have to correlate with chronological age, it seems that older people focus more on interactions with people who are emotionally close to them, and prefer not to spend their energy on wider social networks of acquaintances (Carstensen, Fung and Charles, 2003). They also experience fewer negative emotions than younger people, with such changes thought to result from different coping strategies. Younger people put more effort into solving their problems, which can benefit them in the long term. Their elders, in turn, might instead try to change the way they feel about the situations, for example by focusing more on positive experiences, and selectively remembering more positive memories.

As we age, we try to deepen our connections with our loved ones. Image courtesy of photostock at FreeDigitalPhotos.net

As we age, we try to deepen our connections with our loved ones. Image courtesy of photostock at FreeDigitalPhotos.net

The evidence would therefore suggest that we do indeed become happier as we mature: we stick to our own values, get better at fulfilling our psychological needs, get more control over our emotions, and learn that worrying about the opinions or approval of others does not give us the satisfaction that we crave. Something that we can all look forward to as we continue to age.

Post by: Jadwiga Nazimek

References:

McAdams, D.P. (1996) Personality, modernity and the storied self: A contemporary framework for studying persons. Psychological Inquiry 7:295-321

Carstensen, L.L., Fung, H. H. and Charles, S.T. (2003) Socioemotional Selectivity Theory and the Regulation of Emotion in the Second Half of Life. Motivation and Emotion 27 (2):103-123 http://link.springer.com/article/10.1023%2FA%3A1024569803230#page-2

Sheldon, K.M. and Kasser, T. (2001) Getting Older, Getting Better? Personal Strivings and Psychological Maturity Across the Life Span. Developmental Psychology 37(4): 491-501 http://psycnet.apa.org/journals/dev/37/4/491/

Posted in Jadwiga Nazimek | Leave a comment

Sensation: “it’s the rat’s whiskers!”

Screen Shot 2015-02-08 at 21.09.12When I tell people I study rodent whiskers I’m often met with a slightly puzzled look. More often than not, I get asked ‘why?’ which is probably fair enough since to the general population it might seem like a slightly odd thing to do. Unlike my colleagues studying Alzheimer’s disease or chronic pain, there’s no obvious reason why we should be interested in the whisker system- after all humans don’t have whiskers (hipster beards aside) and at first glance there’s no obvious medical benefit. However, there are in fact many amazing features of the rodent whisker system which could provide fundamental insights in neuroscience, alongside many opportunities for technological and medical advances.

One key problem in neuroscience is understanding how the sense organs (eyes, ears, nose, tongue and skin) take information from the outside world and translate it into something we can perceive. Take olfaction for example: a smell begins life as a small number of air borne chemicals hitting receptors in our nose. But, from these humble beginnings it can – with the help of a bit of brain power – become so much more; the appetising aroma of freshly baked bread or the memories of summers long-past engrained in the smell of petrol and freshly cut grass.

Another sense we sometimes take for granted is our sense of touch, how do we manage to distinguish between smooth and rough surfaces? Rodents are experts at navigating the world in the dark using only their sense of touch and they use their whiskers in much the same way that we would use our fingertips – to get information about something in front of them. Rodents rhythmically brush and tap about 60 large vibrissae (whiskers) against objects to determine their size, shape, orientation, and texture. This behaviour is called ‘whisking’. When a whisker bends against an object, forces and torques are generated at the whisker base. By quantifying these mechanical signals we are able to understand what information the rat’s brain is receiving.

4368236955_c3eaf7080c_mThe fact that the whisker system uses mechanical information is a great advantage for scientists as it means that we can measure the exact inputs coming into the receptors at the base of the whisker (forces and bending moments are easier to measure than the equivalent input for every other sensory system). For example, the equivalent in the visual system would be attempting to measure every single photon of light hitting the retina- something that is currently impossible. Furthermore, the whisker system has a well-defined neural pathway, meaning we know the route that information takes from the base of the whisker, through the brainstem and thalamus all the way up into the cortex. In this pathway, each whisker is faithfully represented so that at any stage along the neural pathway, you will find neurons that fire to the movement of a single whisker and no other. These features provide an unparalleled opportunity to study how the neurons ‘code’ information from the external world and how the brain ‘decodes’ it.

If we can understand the way information from the outside world is transduced within the nervous system, we can use this knowledge for a surprisingly wide-range of applications. One of the most promising applications is the construction of robotic whiskers which can be used in situations where visual information is difficult to obtain. For example, fog, darkness and glare can all interfere with optical sensors. A tactile based sensor, however, could provide crucial information where optical sensors fail. For example, fault detection in piping, machinery or ducts.

Another potential application is in the field of intravascular surgery. This application would require our robotic whiskers to be miniaturized in a biocompatible manner. An increasing number of surgeries are being conducted non-invasively. Although there are several optical sensing methods available to the surgeon, none of these methods can replicate the sense of touch that is lost when performing non-invasive surgery.

Whilst there is a still a way to go before whisker based technologies can be fully used in the situations outlined above, we are certainly making significant headway – for example take a look at the following video showing ‘Whiskerbot’- a robotic active touch system created by scientists at the University of West England and the University of Sheffield.

Hopefully, projects like this will not only inspire others to study this fascinating sensory system, but also pave the way for innovative technological advances.

Post by: Michaela Loft

Posted in Michaela Loft | Leave a comment

What we can learn from sharks: Ancient antibodies

shark1Now I’m sure that many will agree with the statement that, at least in the literary sense of inspiring awe, sharks are awesome creatures. They are one of the apex predators in their environment, the structure of their skin at a molecular level makes them swim faster and they can constantly replenish their teeth in conveyor belt like fashion!

As creatures go the shark model is pretty old, about 420 million years old, and yet they also still have amazing complexity. Of particular interest to this article is their highly evolved – if ancient – immune system.

shark2

Strand model of an antibody, the structural heavy chains are shown in green whilst the light chains that help to form the antigen binding sites are seen in red.

Just like us a shark’s immune system is reliant on a class of proteins known as antibodies to function correctly. Antibodies are a class of protein that play a variety of different roles in the body, most notably in their recognition and immobilisation of invading pathogens. This occurs through the binding of small macromolecules, called antigens, to a special recognition site of the antibody. These are typically exposed at the surface of pathogens or else secreted by them.

This is however not the only reason many researchers are interested in antibodies. Their ability to recognise very small quantities of antigens with a high specificity makes them useful in bio sensing or as treatments to disease by binding to specific proteins thus blocking their function.

For these applications it is useful to have a large amount of such antibodies, and in fact for a lot of fields of biological research (not just immunology), antibodies are a critical reagent in many experiments.

shark3

Outline of antibody production via hybridoma cells

The typical method for producing these antibodies is to first induce their production in a model organism, such as a mouse, then extract cells from the mouse’s spleen, fuse them with a myeloma (a benign cancer cell that divides rapidly) and then use this hybrid cell (known as a hybridoma) to produce many copies of the antibody. Following this the antibodies must be carefully purified before they can be used.

This is a complicated process and fraught with difficulties, getting mice to make the right antibodies and producing the hybridoma is difficult enough for a start. A better approach is to produce recombinant antibodies by inserting DNA encoding them into model cells such as E-coli or yeast, which are much easier to handle. A big advantage here is that it is also possible to  make human antibodies, critical for any clinical work. However this synthetic approach is still tough as many recombinant antibodies are not stable enough to survive purification.

This is where the sharks come in. Sharks live in a highly saline environment, the sea, and so to avoid their bodies just shrivelling up through osmosis their bodily fluids contain high concentrations of osmolytes that prevent water moving out of their tissues. One of the major osmolytes in sharks is urea, typically at a concentration of several hundred millimolar.

Urea is a powerful denaturant and is a go to reagent for biochemists who want to study how stable a particular biomolecule is. Since shark blood contains high concentrations of urea scientists suspected that their circulating proteins, including antibodies, would be more stable than their human counterparts.

This hypothesis proved to be true however it was not just enough to know that they were more stable, they also needed to know how and why. The best way to understand the inner workings of a protein is to have an atomic resolution structure and to get that you require two things; protein crystals and x-rays.

Unfortunately making protein crystals is not so straightforward (see my earlier post on the topic), and in this case it proved impossible. Instead fragments of the complete shark antibody were crystallised and analysed by x-ray crystallography. The atomic images were then put together by researchers like a jigsaw puzzle to gain an insight into the inner workings of the antibody,

What they found is that whilst the sequence of amino acids that make up shark antibodies is very different to human antibodies, the overall shape and fold is remarkably similar. This is an example of convergent evolution, were two different species evolve the same solution to a problem independently.

shark4

Over lay of human antibody heavy-chain fragments (Red, Blue and Green) with the same region from a shark antibody (Grey)

There were however still some important differences. In particular the shark antibodies contained several extra intermolecular interactions at key points within their structure that helped to make the molecule more robust to chemical stress.

Armed with this new knowledge the researchers went one step further and modified recombinant human enzymes to now include these extra interactions to test the impact they would have on stability. Happily the stabilisation was transferrable and the modified enzymes could survive in temperatures up to 10 degrees higher than unmodified, as well as being almost twice as resistant to urea.

What was most pleasing is that the rate of secretion for the modified antibodies was vastly improved. The researchers suggested that this would likely be a boon to the antibody industry and could potentially have significant diagnostic and therapeutic application. This all goes to show that sources of scientific innovation can come from the most unlikely of places…oh and of course reinforces my point that sharks are super awesome.

SSAThis post, by author Marcus Gallagher-Jones, was kindly donated by the Scouse Science Alliance and the original text can be found here.

References

Feige, M.J. et al., 2014. The structural analysis of shark IgNAR antibodies reveals evolutionary principles of immunoglobulins. Proceedings of the National Academy of Sciences. Available at: http://www.pnas.org/content/early/2014/05/14/1321502111.abstract.

Posted in Scouse Science Allíance | Leave a comment