When sleep becomes a person’s worst nightmare!

Screen Shot 2015-11-30 at 19.39.49At the end of a long, hard day, many of us relish the comfort of our beds. We snuggle under the covers and with a satisfying sigh, welcome the sweet onset of sleep. But for some people, sleep is not such a pleasant experience. Here’s three conditions likely to turn sleep into someone’s worst nightmare:

1) Sleep paralysis

Waking up and not being able to move or speak is a terrifying prospect. But for some people, this nightmare can actually be a reality. People who suffer from sleep paralysis may experience periods, either as they wake up or when they are falling asleep, when they feel conscious but are unable to move a muscle, sometimes for up to a few minutes. During this time, the individual may also experience a crushing sensation in their chest or disturbing hallucinations.

Despite being described in various ways throughout history, the term “sleep paralysis” was first coined in 1928 and is believed to be caused by a disturbance in a person’s normal sleep pattern. Briefly, our sleep occurs in approximately 90 minute cycles consisting of two stages: the non-rapid eye movement (NREM) stage, which makes up about 75–80% of our sleep, and the REM stage. It is while we are in REM sleep that we experience our most vivid dreams. During this sleep-stage, our brain also sends signals to our muscles inhibiting movement. People with sleep paralysis tend to wake during REM sleep, therefore finding they cannot move or speak as their muscles are still paralysed. As a consequence, this disorder is often associated with risk factors that affect one’s sleep (e.g. stress and narcolepsy) and treatment tends to focus on addressing the related conditions.

2) REM behaviour disorder

Screen Shot 2015-11-30 at 19.39.57In contrast to sleep paralysis, REM behaviour disorder is characterised a by a lack of muscle inhibition while a person is in the REM stage of sleep. Consequently, people with REM behaviour disorder tend to act out their dreams physically and verbally (e.g. kicking out, screaming, etc.). This can be both distressing and potentially dangerous to themselves and any poor souls sharing a bed with them. In fact, 35–65% of people with this condition report having caused injury to themselves or their bed partner. As one may expect, diagnosis of REM behaviour disorder often follows as a result of such injuries.

REM behaviour disorder usually occurs in people over 50 years old, and may be a risk factor of disorders associated with neurological decline (e.g. Parkinson’s disease). At present, treatments for the condition focus on symptom control using medication (e.g. clonazepam) and ensuring one’s sleep environment is safe.

3) Sleep apnea

Sleep apnea is a potentially serious, and highly distressing, condition where someone will intermittently stop breathing repeatedly while they sleep. This is often accompanied by heavy snoring and disrupted sleep resulting in excessive daytime tiredness. There are two types of sleep apnea: obstructive sleep apnea which, as the name suggests, occurs when a person’s airway becomes blocked due to the muscles and soft tissue collapsing during sleep; and central sleep apnea, a rare form of the condition, where the brain fails to signal to the muscles telling them to breathe. If left untreated, both forms of sleep apnea can lead to serious medical conditions, such as high blood pressure (hypertension), low oxygen blood levels (hypoxemia) and stroke.

Screen Shot 2015-11-30 at 19.40.11Diagnosis of sleep apnea is primarily based on measuring the number of times a person stops breathing per hour (≥15 or ≥5 in combination with other symptoms e.g. excessive daytime tiredness) while they sleep. Doctors will also look for the presence of risk factors, such as obesity and high blood pressure, as indicators of the condition. Sleep apnea is usually a lifelong condition but can be managed in a number of ways from making lifestyle changes (e.g. losing weight or sleep on one’s side) to using a therapy called continuous positive airway pressure (CPAP), a mask linked to a ventilator which applies mild air pressure to keep the airways open.

Despite the obvious differences between these three conditions, sleep paralysis, REM behaviour disorder and sleep apnea all have one thing in common – they make going to sleep distressing, and sometimes harmful, for those living with them. So don’t take for granted a good night’s rest; for people with these sleep disorders, sleep may be a nightmare waiting to happen.

Post by: Megan Barrett

Rock pooling isn’t just for children!

First year Marine Biology students exploring the rock pools. Photo by Jack Davis
First year Marine Biology students exploring the rock pools. Photo by Jack Davis

Just recently, my University course took a trip down to Plymouth, during which we went down to a rocky shore covered with rock pools. Now, on a field trip at University level, you would probably expect some complex sampling, evaluation and weird but wonderful science experiments to take place. Amazingly, however, our assignment was simply to look into the pools.

As someone did joke, that is something toddlers do when they are on their summer holidays. But the lecturers did have a point with this apparently simple exercise: rock pools are not as basic as they might first seem.

The variety of life found in these isolated little lagoons was astounding. In a pool of water measuring just 1 square foot, you could find animals and organisms from so many different phyla: crustaceans, Macro algae, polychaetes, echinoderms, molluscs, bryozoans, hydrozoans. Such a diverse cross-section of life in such a relatively tiny home, and each organism with its own stories to tell and secrets to keep.

The Wordly and the Wary
Now, if there was ever an old man with a tale to tell it would be the chiton. The one we managed to find was only 2cm long and crawled around showing off its species’ distinctive body armour-plated back, which made it look almost like a cross between a woodlouse and a limpet. Incredibly, the chiton species evolved over 400 million years ago (in comparison, humans only just came along around 250,000 years ago). For me, that is an incredible thought. This species has seen so much and lived through so much, whilst it’s unlikely that the human race will survive for that long itself.

Next we come to the crabs, probably the best-known of the rock pool dwellers. Fast in their movements and partial to hiding beneath seaweed, they can evade rock-pooling beginners. However, in just one trip, we uncovered members of 3 different species: a velvet swimmer crab (Liocarcinus depurator), an edible crab (Cancer pagurus) and a common shore crab (Carcinus maenas). All display the same stereotypical crab shape, but each has its own variations. Edible crabs have blac-tipped claws and, like the name suggests, the velvet swimmer crab’s back feels velvety if you are lucky enough to get close. Of the three crabs this one is the most aggressive, so watch out for the claws!

image3
Balanus sp. Photo by Xanthe Ginty

The Well-Endowed Barnacle
Barnacles covered the area we explored and, whilst they usually close their shells when isolated in rock pools, we were lucky enough to find a couple actively feeding. It’s a strange sight to see – the barnacles open their shells and stick their ‘feet’ out (yes, they technically lie on their backs with their legs in the air) which look like tiny rakes that fan through the water before being pulled back inside again.

Speaking of probing protuberances, I’m very sorry, gentlemen, but prepare to feel emasculated. If a barnacle grew to the size of a human then its penis would be over 20m long! Very impressive but also a clever adaptation. Barnacles are sessile organisms (meaning they don’t move) so a male’s large penis allows him to reach females that might not be right next to him.

image2
Actinia sp. Photo by Xanthe Ginty

Tentacles and Terrors
Moving on, we also found in our rock pool a number of alien-like anemones, tentacles ready and waiting for something to float by to pull in and eat. The most common anemone we found was the usually red, occasionally green, beadlet anemone (Actinia equine). It’s simple to distinguish beadlet anemones from other species – just stick your finger in (gently, so as not to hurt them)! Dangle your fingers amongst their tentacles and you’ll feel them trying to pull you in. You might even feel a slight painless tingle as they try to sting you  However, once they realise you’re too big, they will close up to hide away. It’s this closing up that reveals their identity, as other species can’t draw completely into themselves.

Finally, we came across a ferocious predator – the dog whelk (Nucella lapillus). This mollusc hunts related species and drills a hole in the shell of its prey before injecting digestive enzymes. Trapped by its own shell, the prey is completely helpless as the enzymes break it down whilst it’s still alive. Once it’s reduced to a soup of body parts, the dog whelk sucks out the juices, leaving behind the coffin of its victim.

These were just a few of the different species we found on our trip to Plymouth. Our lecturers were right though, spending time just looking in rock pools can really teach you a lot. You don’t need to be an expert to enjoy rock pooling and you certainly don’t need to be an expert to identify things. A sea shore identification guide will cover the basics.

So, next time you’re heading down to a beach in England, look out for that rock pool and go exploring in a whole different world. Don’t overlook the small white barnacles clinging to the rock, keep a careful eye open for what treats you may find hidden in the cracks, and don’t forget to play with the anemones. Even 30-year-old marine biologist lecturers can’t resist that temptation!

Post by: Jennifer Rasal

References:
https://en.wikipedia.org/wiki/Human_evolution
http://www.ywt.org.uk/sites/yorkshire.live.wt.precedenthost.co.uk/files/120130%20Shoresearch%20species%20fact%20files%20CB.pdf
http://www.wemburymarinecentre.org

The theory of feeling good

Psychology, especially in the context of health care, is usually associated with treatments for mental illness and attempts at relieving misery and suffering. There is, however, an area of psychology that looks beyond what goes wrong in human mind, instead focusing on understanding and enhancing good things such as happiness and positive emotions. You might ask: why would anybody concern themselves with studying something that stems naturally from good fortune and achievements? Well, some research suggests that it is the other way round: that happiness itself can lead to blessings such as good relationships and financial security (Lyubomirsky et al., 2005)

Enjoying time with others can lead to valued relationships. Image courtesy of panuruangjan at FreeDigitalPhotos.net
Enjoying time with others can lead to valued relationships. Image courtesy of panuruangjan at FreeDigitalPhotos.net

One theory which attempts to explain the link between happiness and good fortune is the ‘broaden –and –build’ theory of positive emotions (Fredrickson, 2001). According to this stance, feelings of joy, pride, contentment, love and interest help us build long-term resources such as health and job satisfaction by broadening of our thoughts and actions. You might have noticed that stressful situations focus your thoughts on the immediate problem. On the other hand, joy is often associated with playfulness and creativity, interest and exploration, contentment, pride, dreaming about future success, playing, exploring and savouring experiences with those close to you. Further, curiosity can become expertise, whilst affection and enjoying time with others might turn into valued friendships. These resources can increase our resilience, helping us to deal with the difficulties of life.

Resilience can be thought of as the ability to find opportunities, adapt to limitations and recover from misfortune (Cohn et al., 2009). According to some research, this skill of living through changing circumstances is an important link that connects positive emotions and life satisfaction. In other words, joy, pride, gratitude and other good feelings might increase life satisfaction indirectly, through strengthened resilience. And remember that happiness or satisfaction do not equal the absence of negative feelings (Cohn et al., 2009). We can experience sadness or anger during one part of the day and joy or enthusiasm during another. For example, when a loved one dies, resilient people still experience positive emotions amidst their longing and grief (Bonanno et al., 2005). Evidence also suggests that the strengthening effect of good feelings on resilience is stronger than the weakening effect of negative emotions (Cohn et al., 2009). So we don’t have to avoid feeling bad; we just need to also feel good.

Happiness may increase activity and well-being. Image courtesy of nenetus at FreeDigitalPhotos.net
Happiness may increase activity and well-being. Image courtesy of nenetus at FreeDigitalPhotos.net

Not all studies conclude that the link between positive emotions, resilience and happiness is definitely causal. Some researchers found that when they asked participants to write down their feelings at different points in time, they could see a correlation between positive emotions and resilience. This approach raises the question of causality. However, another study showed that people can influence their own wellbeing by practicing certain approaches to life. For example, after ten weeks of counting their blessings participants slept better, exercised more and felt physically better (Emmons and McCullough, 2003). This suggests that experiencing positive emotions such as gratitude can actually improve wellbeing. It remains to be seen, however,  whether these effects apply to people with mental illness, e.g. depression, those with extremely high negative emotions or extremely low positive emotions, or those affected by a long-term, intensely stressful events (Cohn et al., 2009).

Post by: Jadwiga Nazimek

References:

Bonanno, G. A., J. T. Moskowitz, A. Papa, and S. Folkman, 2005, Resilience to loss in bereaved spouses, bereaved parents, and bereaved gay men: J Pers Soc Psychol, v. 88, p. 827-43.

Cohn, M. A., B. L. Fredrickson, S. L. Brown, J. A. Mikels, and A. M. Conway, 2009, Happiness unpacked: positive emotions increase life satisfaction by building resilience: Emotion, v. 9, p. 361-8.

Emmons, R. A., and M. E. McCullough, 2003, Counting blessings versus burdens: an experimental investigation of gratitude and subjective well-being in daily life: J Pers Soc Psychol, v. 84, p. 377-89.

Fredrickson, B. L., 2001, The role of positive emotions in positive psychology. The broaden-and-build theory of positive emotions: Am Psychol, v. 56, p. 218-26.

Lyubomirsky, S., L. King, and E. Diener, 2005, The benefits of frequent positive affect: does happiness lead to success?: Psychol Bull, v. 131, p. 803-55.

Prepare for the winter home invasion.

As the weather gets colder and the nights draw in it’s not just you and I who like to spend our days snuggled up inside, a whole host of mini-beasts are also clambering to join us in the warmth. So, as a public service the Brain Bank wants to introduce you to some of these unwanted winter lodgers and provide a few tips for evicting them.

Spiders:

8007321219_a02962338f_zArachnophobes beware because autumn is prime breeding season for spiders and you are more than likely to see a number of hopeful young males patrolling your home in search of a suitable mate. But, if playing host to arachnid speed dating isn’t scary enough, a number of residents from the town of Macclesfield have reported finding spiders the size of mice joining in the dating game. These giant house spiders thrived during our disappointingly wet summer and are now looking to reproduce. The average size of a giant house spider is three to four inches (measured diagonally from front to back leg) but residents are reporting much larger specimens. With dark hairy bodies, an impressive leg span and a bite akin to a bee sting (although luckily with fangs unable to penetrate human skin) these giant invaders are without doubt unwelcome guests. Experts suggest that the best way to deter spiders from entering your home is to be fastidious about your dusting. Male spiders find a mate by sampling the silk females spiders leave behind, so where there is no female silk there shouldn’t be any expectant males!

Other Insects:

To survive the freezing UK winters many insect species alter their biochemistry creating high levels of glycerol which lowers the freezing point of their blood – a bit like having their own internal antifreeze. However, despite these adaptations many will still seek out sheltered accommodation to weather the worst of the winter and can end up entering your home. Thankfully, most of your new winter lodgers will stay hidden away until spring. 6599552079_25c20b628d_zHowever, it is not uncommon for warm winter days and central heating to trick your guests into waking up. Insects use cues from their environment to know when to hibernate and when to wake, this can be length of day or temperature and indoor insects can be easily tricked by central heating. This means it’s not uncommon to find the occasional butterfly, moth or ladybird flitting around the house mid winter after being confused by central heating. The majority of wintering insects will remain safely tucked away under your radar. However, if you would rather deter their intrusion the best way is to create physical barriers, sealing up all entry points to your home and ensuring outside plants do not sit too close to your walls. Also be aware that your Christmas tree may be home to a whole array of dormant critters (especially ladybirds) so you may get more than you bargained for when you bring it inside.

Mice and rats:

8365895042_95f8ec379d_zAs the weather gets colder and food sources dwindle mice and rats are more likely to enter our homes in search of sustenance and shelter. These cheeky invaders are happy to make their nests in attics, cellars or under kitchen cabinets emerging at night to nibble on whatever delicacy has been left unprotected. Many also use the warmth and abundant food to continue breeding throughout the winter (Note that a female mouse can have a new litter of 6-8 babies every 3/4 weeks!). The best way to deter these unwanted pests is to secure your home, make sure there are no gaps around doors or in the walls of your house (remember mice and young rats can squeeze themselves through very small spaces). Experts suggest that you plug up existing holes with wire wool – mice and rats can chew through most barriers but are deterred by the texture of this. Also, make sure any food in your kitchen is stored out of reach and in chew proof containers (a loaf of bread in a ground level cupboard is practically an open invitation).

Post by: Sarah Fox

Bayes and Girls

2533475728_a0dcfd4524_zYou have long hair, never miss the Great British Bake-off and are particularly good at multitasking. You also work in Parliament. So are you more likely to be a man or a woman?

Well, some pretty lazy stereotypes aside, we may believe that the initial description is more likely to be female than male. The cliches certainly push us into thinking that way.

But, we should also consider the under-representation of women at all levels in British politics, a fact which has been highlighted in the news.

So, ignoring the introduction spele, if we were simply asked what is the chance that someone picked randomly from Parliament is a guy or a doll, how could we go about answering this? Well, let’s think in terms of the proportional representation of these two groups. Chances of picking a fella is certainly going to be larger. We can reasonably then go and place our stack of chips with the chaps.

What happens when we also consider the multitasking, baking-lover characteristics? These are things that stereotypically we would associate with the fairer sex so, we may reason, this person is more likely to be female. The result is a conflict between these two guesses.

7204293066_1866f0488a_zHow many men have long hair, like baking shows and can pat their head and rub their stomachs at the same time? Actually, probably quite a few. Maybe not proportionally as many as women but if we then include what we already know about the relative population sizes in Parliament, there may well be, in absolute terms, more men who fit this description. Simply by the prior fact that there are so many blokes in parliament, this may well weigh the answer in their favour.

This example is a different take on a common example of something called decision heuristics which can lead to cognitive bias. That is, rules-of-thumb that you and I use to take mental shortcuts, focusing on one aspect of a problem rather than the whole thing. It involves presupposition and is an example of where our intuition can lead us astray. The description of the person’s characteristics seduces us into imagining a woman but the baseline gender ratio, which is sneaked-in afterwards, is probably a better indicator.

What this little example can show is how we can go about combining two separate bits of information to get an overall, rational answer. In statistics this can be done formally using something called Bayes’ theorem.

In general terms, Bayes’ theorem takes what we already know- called the prior- and combines this with what extra information or data we observe- called the likelihood. As a result, we then have an answer- called a posterior- that is influenced by both of these things. How much it is influenced by each depends on the strength and conviction of the prior belief or data respectively. If they agree, then the answer is more certain than it would have been if we had used only one of them in isolation and if they are conflicting then the answer represents this too.

In the British politics example above, the prior could be what we know about the proportion of men and women and the extra data is the description of the employee. Like a tug-of-war, these two bits of information pull us in different directions. For example, we can not simply go along with the description in isolation and bank on a broad. The conclusion could be that, before hearing the characteristics, we are fairly sure we would get a gent at random and, even after hearing the profile, we may still think this is the most likely outcome, although we’re less sure about it.

5985805174_bd5e2cfe98_zKnowing that the mystery person has long hair moves us towards thinking that it is more likely to be a woman compared to before we knew anything about their hair-do but it’s just not enough to overpower what we already know about the parliamentary gender bias. That said, even though the flowing locks may not actually change our mind, they would introduce more doubt. Bayes’ theorem could help quantify this doubt.

Bayes’ theorem has applications far and wide, including spam filtering, internet search engines and voice recognition software. Originally, its statistical fundamentals were thought a little shaky, so have been extensively discussed and argued but it is fair to say a lot of progress has been made and the theorem has attained acceptance in most fields. That said, It has some way to go before it’s nearly as popular as the Great British Bake-off.

Post by: Nathan Green

Aaahh!! Real Monsters!: How parasites and pathogens colonised fiction.

After the recent torrent of zombie everything and anything, it might feel like science fiction is all about done with weird parasites and diseases.  But the mystery and power of organisms sometimes invisible to the human eye has inspired fiction for decades, including some of the most famous Sci-Fi monsters. I’d take a wager that we’re still a few undead away from total eradication of fictional parasites.

Settle in, pull on a hazmat suit and a facemask, and we’ll delve elbow deep into the parasitic ooze of film, television and video games to take a good look at some of the best parasites and pathogens Sci-Fi has to offer.

Xenomorph or Alien – Alien franchise
Best get the big guns out right away. Alien is one of my all-time favourite films, centred around one of cinema’s most iconic and terrifying Sci-Fi monsters.

Xenomorphs they steal resources from their host from within the host’s body, so we can call them endoparasites. They’ve got a pretty complex life cycle: some life stages needing a host and some able to live in the environment. This mixture of host dependency is seen quite often in real parasites, in human-infective worms such as the roundworms Schistosoma and Ascaris, and flatworms like Fasciola. Like the Xenomorph, these worms use their human host as a place to reproduce or develop, whilst the free living stages search through the environment for new hosts to infect.

 Putting my well-practised, “parasite-life-cycle-specific” drawing skills to good use even years on from all of my undergraduate exams.
Putting my well-practised, “parasite-life-cycle-specific” drawing skills to good use even years on from all of my undergraduate exams.

Real parasitic worms are fairly scary too, responsible for a huge burden of severe and chronic disease especially among the world’s poorest populations. Although we can at the very least be grateful that their method of exiting the host as eggs in the faeces is a little less violent than the “chestbursting” exit of the Xenomorph.

Genophage – Mass Effect video game series
Some of our fear of pathogens is really a result of our fear of our own misuse of them, as bioweapons. Genophage is a phage-like virus in the Mass Effect universe used against the Krogran race to control their population by the Citadel, an intergalactic governing body.

Phages are small, simple viruses that infect bacteria. In doing so, they are able to insert genetic material from themselves or other host cells, into that of their current host. The modus operandi of the genophage virus is not too dissimilar, as it inserts a specific mutation into all the body cells of Krogans that prevent pregnancies carrying to term.

Phages have the power to turn the fairly unpleasant Escherichia coli bacterium into a thoroughly horrible and occasionally fatal O157:H7 form. Scientists are now trying to harness this ability, but for much less nefarious purposes. It’s hoped that modified phages could provide a new mechanism of delivering vaccines or medical treatment against certain infections: seriously cool stuff.

Ceti Eel – Star Trek II: The Wrath of Khan

As a complete non-Trekkie, my one-time viewing of 1982’s The Wrath of Khan didn’t give me a full idea of the wonderful world of Star Trek zoology (TRIBBLES. LOOK AT THEM).

 TRIBBLES. Star Trek: The Original Series. Desilu productions. Still taken from Wikimedia Commons.
TRIBBLES. Star Trek: The Original Series. Desilu productions. Still taken from Wikimedia Commons.

From that one film I was introduced to Ceti Eels, fantastic parasites that set off my love for the gory and gruesome in a manner only paralleled by real parasites on the level of loaiasis and Chigoe fleas. After incubating in the body of its parent, the developed Ceti Eel enters a host through the ear, worming its way into the skull cavity and attaching to the cerebral cortex. As you can imagine this is hugely painful.

The Ceti Eel then unveils its crowning weapon: mind control. Or to be more precise, the infected are left susceptible to suggestion – fantastic news for the enigmatic antagonist, Khan.

Mind control must surely be confined to Sci-Fi? Not so. Both Ophiocordyceps fungus and Dicrocoelium fluke worms can manipulate their host’s behaviour to suit their own ends. The juvenile stage of the fluke is released by snails as cysts in their slime. Ants eat said slime for its moisture. Once in the ant, one key worm gets up to the central nerve structure of the ant, and convinces it to climb to the top of a blade of grass and clamp down, waiting right on show to be accidentally eaten up by a cow or sheep. The worm drives the ant to get itself eaten. The real mind-controlling worm is even better at its job than the fictional eel!

Why are there so many parasites in Sci-Fi (and why are they all so damn cool)? Art and culture are vital for exploring and communicating the world around us. This stands just as true for science fiction, and just as true for the gory and the weird that nature likes to throw at us. The strange and exciting parts of nature are what take our piqued interest, and drive us to fascination and awe. So, while the current zombie tidal wave might just be past its peak, I reckon as long as we have fantastic, powerful, utterly disgusting parasites from which to draw inspiration, we’re going to be telling stories about them for a long time to come.

This post, by author Beth Levick, was kindly donated by the Scouse Science Alliance and the original text can be found here.

References: fictional
http://en.wikipedia.org/wiki/Alien_%28creature_in_Alien_franchise%29
http://masseffect.wikia.com/wiki/Genophage
http://en.wikipedia.org/wiki/Khan_Noonien_Singh
http://en.memory-alpha.wikia.com/wiki/Ceti_eel

References: better than fictional
http://en.wikipedia.org/wiki/Helminths
http://en.wikipedia.org/wiki/Bacteriophage
http://news.nationalgeographic.com/news/2014/10/141031-zombies-parasites-animals-science-halloween/
http://en.wikipedia.org/wiki/Dicrocoelium_dendriticum
http://en.wikipedia.org/wiki/Ophiocordyceps_unilateralis

What’s going on in your head?: The science behind our inner voice

As a neuroscientist, one aspect of brain-science that has always intrigued me is the idea that we may never know exactly how another person experiences the world and whether their experiences differ from our own. I know what the red ball (pictured right) looks like to me but how do I know that you’re seeing same thing? In fact, I’ve often wondered what it would be like to see the world through the eyes of someone whose perceptions differ from mine, for example someone with colour or face blindness.

Sadly though, I’ve always assKarl_Pilkington_2008-02umed that my own experiences are disappointingly mundane and ‘average’. That was until ‘life guru’ Karl Pilkington taught me otherwise…

A few months ago, during a particularly long experiment, I was passing time listening to old exerts from the Ricky Gervais show when I came across the following dialogue:

Reading from Karl’s diary: “While I sat listening to The Kinks on my iPod, I wondered if everybody thinks in their accent. I know I do.”

Stephen: What’s this? What are you talking about?

Ricky: How do you know you think in your accent? Tell me a typical thought

Karl: I thought “that’s weird innit?” not “that’s weird isn’t it?” and I thought “I actually think in my accent”

Ricky: No, but, when I think I don’t think the sentence as like I’m saying it, it’s just a thought, the thought appears, it’s conceptual and it’s already there. It’s not like I go, “Rick?” “What?” “Just err… looking at that fella over there were you?” “Yeah, I was yeah. Erm, I was think he looked a bit weird” “Oh, so was I”, I don’t think out whole sentences…

Stephen: Is that how your mind works?

Karl: In a way, yeah

Ricky: Brilliant, it’s great, he has to think out whole sentences!

Stephen: That explains a lot!

This sparked my curiosity since, as far back as I can remember I’ve always thought in complete sentences, often to the extent that I have conversations with myself inside my own head – I just assumed that this was a pretty normal thing to do!

So, I decided to do a bit of my own research into this ‘inner monologue’. This research began life (as many eminent and respected studies often do) on Facebook, where I asked a number of friends:

“What is it like to climb inside someone else’s head? – I’m researching for a post on the inner monologue and, although I think in words like I’m narrating my own life, apparently there are people who don’t…what’s it like inside your head? and if you don’t think in complete sentences, how do you think?”

From this question I got some pretty interesting answers – In brief, most people who responded had some kind of inner voice but few regularly thought in complete sentences or engage this voice in conversation. Some interesting answers included:

“I think in pictures like I’m watching a silent film. In order to submit things to memory I have to have visuals as i struggle to remember audio descriptions. So most of my memory is made up of pictures and that’s how my thought processes work!”

“I sometimes imagine a highly adapted version of something I’ve read or watched – featuring me – and tailored to my real life situation of the time. Less actual words, more images, but like I’m an outsider observing myself observe my situation.”

“I think I only think in words when I’m either a) questioning something (“why’s that there?”) or b) making a decision to do something (“cup of tea!”). I often say such things aloud too when I’m alone.”

“I was wondering about my very minimal inner monologue after talking to my husband about it earlier this week. I find it incredible how most people seem to constantly be thinking in words/sentences. It sounds exhausting to me. I think in actions, visualizations, feelings, impulses and only really have a proper inner monologue when reading or writing. I never know internally what I’m about to say out loud (unless I force myself to do so, or if I’m nervous about talking in specific situations). Often my mind seems blank with no thoughts. I find meditation very easy.”

“I have narrated my life for as long as I remember. Sometimes, when something is particularly challenging, I sort of Parkinson interview myself, as if the problem is now in the past, and I’m discussing how I overcame it….I’ve done that since I was a teenager!”

So, it seems like people experience a huge spectrum of inner ruminations –  from short sharp assertions “cup of tea!” to long complex “Parkinson style” inner interviews.

But what do scientists actually know about this inner voice? Well, unfortunately it seems that this is one topic that’s been neglected by modern science. However, inspired by the theories of L. S. Vygotsky, modern research has now again picked up the baton and started to delve into the inner workings of the verbal mind.

Where does the inner voice come from?:

16931172632_0f1676a803_mVygotsky believed that inner speech starts to develop in early childhood, evolving from a phenomenon known as ‘private speech’. Many young children talk to themselves while playing – I remember I used to talk to myself, I’d also sometimes have conversations with inanimate objects (perhaps a downside of being an only child?). Vygotsky called this dialogue private speech and suggested that it comes from social dialogues with parents which, in later childhood, becomes internalised as inner speech.

This would imply that inner speech relies on the same biological mechanisms as those used when we speak out loud. Interestingly, we know that inner verbalisation is accompanied by tiny muscular movements in the larynx – it’s as though audible speech is almost produced but is then silenced at the last minute. If anyone’s like me, they may have experienced the phenomenon of externalised inner speech: when I’m deep in internal thought I’ve been known to accidentally say things out loud which should have stayed in my head.

Neuroscientists have also found that an area within the left inferior frontal gyrus, known as Broca’s area, is active when we speak out loud and also during inner speech. Intriguingly, if this region is disrupted using magnetic brain stimulation both outer and inner speech can be altered.

And, to answer Karl’s question….It has been suggested that, assuming inner speech derives from childhood verbalisations, the voice you hear in your head should sound like your own voice – as Karl would say “everybody thinks in their accent”.

Screen Shot 2015-10-10 at 17.01.37Interestingly, studies of limericks suggest that this is indeed the case! Ruth Filik and Emma Barber from the University of Nottingham asked participants to read two limericks silently in their heads, these being:

1) There was a young runner from Bath, Who stumbled and fell on the path; She didn’t get picked, As the coach was quite strict, So he gave the position to Kath.

2) There was an old lady from Bath, Who waved to her son down the path; He opened the gates, And bumped into his mates, Who were Gerry, and Simon, and Garth.

All participants were native to the UK, some having northern accents and others southern. In the UK there is a strong regional divide in the pronunciation of the words bath and path, with southerners rhyming bath/path with Garth while northerners rhyme bath/path with Kath (this being the correct way to pronounce things). By tracking participants eye movements the researchers were able to tell when they were reading a rhyming or a non-rhyming sentence. From this they found that both groups appeared to read silently in their own regional accent (although this is not always the case).

So, what does inner speech actually do?

4929178358_dac74312b0_zVygotsky thought that inner speech may help people to perform difficult tasks. Thinking a task through in words may make it easier to accomplish – there are definitely a lot of words going through my mind when I’m building Ikea furniture. Actually, a number of studies have found that people tend to perform worse on tasks which require planning (like playing chess) if their inner voice is suppressed while performing the task.

Recent studies have also found that inner speech often has a motivational quality. In fact, one of my friends offered this example of her inner voice: “I tend to ask myself questions and then think through the different answers. Also I cheer-lead myself along- ‘Right, ok, you can do this!’”.

The self reflective tendency of the inner monologue may also allow us to reflect more on who we are as individuals. Indeed, Canadian psychologist Alan Morin suggests that people who use inner speech more often also show better self understanding: “Inner speech allows us to verbally analyse our emotions, motives, thoughts and behavioural patterns,” he says. “It puts to the forefront of consciousness what would otherwise remain mostly subconscious.” This idea is further supported by a study of neuroanatomist Jill Bolte Taylor who reported a lack for self awareness after a stroke which damaged her language system.

But, I doubt my friends who reported the lack of an inner voice suffer from any associated lack of self awareness. Therefore, I’m sure that there are still a number of individual differences which remain unaccounted for in these studies.

The dark side:

2967650878_1f436efd1c_zJust as your inner voice can be your own personal cheerleader giving you a boost when you’re feeling low, it can also be your worst enemy. Alongside my Facebook friends, I also posed my question to a group of individuals who, like myself, have been or are currently struggling with depression and/or anxiety. I was intrigued to find that, of all 30 responses, only a couple of people reported not having an internal monologue and most said that their inner voice was conversational (like my own). Not just this but most also said that their inner voice was ‘nasty’ and ‘cruel’ repeating phrases such as “you are useless” or “you aren’t good enough”.

There are a number of studies which support this observation, specifically suggesting that depressed older people rely more heavily on negative internalised speech than social communications when constructing their view of reality (giving them a negative outlook on life). Indeed, the backbone of cognitive behavioural therapy (a commonly used tool in the treatment of mental illness) relies on teaching individuals to re-frame or alter negative thought processes like those mentioned above – “I can’t do it” may become “it’s a challenge but I’m capable given enough time”

Researchers are still not sure how the inner monologue, negative thought processes and social isolation interact in the case of depression. It may be that withdrawal from social interaction leads to a greater dependence on internal processes or perhaps disordered negative thoughts breed the need to withdraw from society. Whatever the case, a better understanding of the mechanisms behind our inner critics may help understand and treat those suffering from depressive illnesses.

Researchers from Durham University found that around 60% of people report that their inner speech has the to-and-fro quality of a conversation. So, despite Ricky and Stephen’s surprise, it seems that Karl perhaps isn’t that abnormal after all. With inner speech being such a wide-spread phenomenon and knowing its possible links with mental health, perhaps it’s time scientists paid a bit more attention to the little voice in our heads?

Post by: Sarah Fox

A Spinal Emulator for Medical Training

The complexity of the human body requires medical practitioners to have an astute working knowledge of anatomy and physiology. It’s no surprise then, that pursuing a degree in medicine is challenging and costly pursuit!

One of the most enigmatic and challenging regions of the anatomy to diagnose is probably the spine. To diagnose problems with the lumbar (lower region) of the spine, a doctor will lay a patient flat on his/her stomach (to achieve what’s called a lordotic spine shape). The doctor will then use the pisiform (bony region at the bottom of the wrist) to apply pressure to each of the lumbar vertebrae. By feeling how the vertebrae respond, the stiffness and how far they move, an experienced doctor can diagnose problems. In case you can’t visualise that, check out this demonstration.

To become competent at this takes time. In fact in medical circles it’s seen as a skill that takes years of practical experience, rather than something that can be picked up in an three hour workshop… But back problems are becoming pretty commonplace, especially with our increasingly sedentary lifestyles, so this is not a skill that should be in short supply!

But why is it such a difficult skill to acquire?

6dcf55_b9902d2be5924629ba07c2cf267ea78a.jpg_srb_p_410_410_75_22_0.50_1.20_0.00_jpg_srbWell, currently medical students learn to diagnose spinal problems by practising on lifeless, unrealistic plastic models.

That is, pushing down onto plastic vertebrae that don’t move or feel anything like a real spine. Following this medical students will then continue to try it out on each other. But, how can you teach students exactly what, for example, a degenerated disk feels like? Short answer, you can’t learn the realistic feel of it without trying it out on a real patient.

Not only that, how can a professor teach his students how fast or hard to press down on the spine, without knowing exactly how hard or fast a student is applying pressure?

My solution

The crux of this problem is that we’re currently using ‘low tech’ to teach this method. This project involves using some simple, low cost technology to create a spinal emulator, that a student can use to learn this method by simulating both a healthy and an unhealthy spine.

Something like this, which I have designed as an initial prototype…

6dcf55_2e9f95631a554ab8be075aca7723d1c4.png_srb_p_630_347_75_22_0.50_1.20_0.00_png_srb

At the top of this model are five lumbar spine vertebrae, the sacrum and the coccyx. Four of the lumbar vertebrae are mounted on flexible metal bars to provide passive “springiness”. But one of the vertebrae (Lumbar 3) is not. This vertebrae is mounted onto a linear actuator (basically a motor system that can move up and down – it’s the black thing in the design above). Underneath the linear actuator is a load cell, a sensor that can measure force.

So we have a system where one of the vertebrae can be electrically moved, and the pressure applied can be sensed. Hopefully you can see where I’m going with this. We can use some embedded electronics to move the vertebrae up or down, according to the amount of pressure being applied to it. With some control algorithms, we can essentially simulate what a real vertebrae would feel like, by simulating a force-displacement ratio (stiffness ratio). We can go further, and simulate varying stiffness profiles to correspond to specific spine problems. In other words we can, in theory, simulate any spine problem in theory.

Why are we only simulating one vertebrae?

Simple answer: cost. This is just a prototype, our budget is small, so it’s a proof of concept. If it works we’ll be looking to create a fully actuated spinal emulator.

So will it work?

Hopefully. But the real value of the system will be in how well it can simulate the real feel of a human spine. And that depends a lot on the algorithms I use… Seems I’ll need to learn the method before I can even attempt creating software to simulate it – any volunteers?

Guest post by Josh Elijah: @yoshelij

aBs7TWXT_400x400Josh is an electronics engineer with a passion for robotics and control systems. He is currently working on a range of projects at Manchester University before embarking on a PhD.

Thinking on your feet: The effects of dance on the brain

It’s nearing the end of September: a month for colourful autumn leaves, freshly sharpened pencils and pumpkin spiced lattes.  For many dance music fans, it’s also time to head to the island of Ibiza for the legendary closing parties at some of the world’s greatest clubs. Typically, nights on the ‘white isle’ see clubbers dancing well into the night and early hours of the morning.

image1
Let’s go dancing: DJs Disciples get the crowd moving at this year’s Cream Ibiza closing party. Credit: James Chapman Photography.

But how does dancing affect us? As anyone who has ever gone to a club night, ceilidh or even a Zumba class can testify, dancing can be excellent physical exercise, raising our heart rates and burning hundreds of calories. However, there is now growing evidence that dancing can also change the way you think.

Just ask professional dancer turned academic psychologist, Dr Peter Lovatt. Dr Lovatt runs the Dance Psychology Lab and researches the links between dance, problem solving and creativity (watch his TEDx talk). According to Dr Lovatt, the benefits of dancing are obvious: “dancing made me feel relaxed and stress free, it helped me to think more clearly, and it felt like the most natural thing in the world to do.” But where’s the empirical evidence for this claim? One emerging area of research studies how different types of dancing can improve different types of problem solving. In a recent study, researchers tested the relationship between dancing and ‘divergent’ thinking; that is, creative thinking tasks with multiple solutions, such as brainstorming. In the experiment, primary school children were randomly allocated to participate in 10 minutes of either ‘improvised’ dance (the experimental group) or ‘command-style’ dance, where they learned a simple routine (the control group). The children then performed a creative toy design task. The results revealed that children assigned to the improvised dance group performed significantly better than the control group. In other words, improvised dancing seemed to boost the children’s creative thinking ability.

There is also growing interest in how dancing can help maintain healthy brain function in older age. Whilst the link between exercise and healthy cognitive function remains uncertain, it remains a key area of interest for researchers. However, fitness may not be the only mechanism involved. Indeed, dancing involves a combination of elements which may be beneficial, including social interaction, musical stimulation and cognitive reasoning (i.e. literally thinking on your feet). In one study, 35 older people who took part in a dancing programme, for over six months, showed a range of cognitive improvements, including improved working memory and reaction times. Yet within the group cardio-respiratory performance did not change. Furthermore, in an American cohort study that tracked over 400 older adults over several years, dancing was the only physical activity linked with lower risk of dementia. This suggests it might not necessarily be just the work-out factor involved in dancing that helps to protect cognitive and perceptual abilities.

Researchers have also explored the therapeutic effects of dance for treating clinical conditions. The findings of several small-scale studies indicate that dancing may be beneficial for people with certain neurodegenerative disorders, like dementia.  For example, residents of a dementia nursing home who took part in weekly dance sessions as part of a research study gained small improvements in certain visual functions and planning ability. Dancing may also help people with mental illness. In one study involving patients admitted to a psychiatric ward, just 30 minutes of dancing to lively music was sufficient to reduce their symptoms of depression and improve vitality.  The interesting thing about this study is that researchers also recruited a second group of patients to simply listen to the same music, without dancing. The results showed that only the patients who danced derived any benefit: in other words, for these patients music alone wasn’t enough.

Of course, the evidence in this area is still emerging and better quality studies are needed to fully understand how dance affects the brain.  The research that has been done still leaves lots of unanswered questions, like what are the effects of different types of dancing and does it matter what type of music you listen to? In the meantime, however, the next time you head off to Ibiza, Zumba or even just dance around the kitchen, just consider the possibility that you might be doing yourself more good than you think.

See you at the front.

Post by: Lamiece Hassan

Aromatherapy: what is it and does it actually work?

ET_essential_oil_candleWe all know that smells can affect the way we feel. Indeed, essential oils are used regularly in Ancient Egypt and India as an adjunct to improve health and well-being. These oils are usually extracted by steam distillation from fragrant plants such as lavender, rose, orange, cinnamon or peppermint, to name just a few. The oils can be inhaled, used during massage, or even ingested.

It is theorised that the effect scent has on mood may be mediated by the architecture of the olfactory system. The areas of the brain that process scents are directly connected with areas involved in processing emotions, memories and autonomic responses.

Let’s start from the beginning, i.e. the nose. Here the receptors on olfactory neurons detect odorants (chemicals which form a scent) and transform these  particles into electrical signals. These signals travel along the olfactory nerve to the olfactory bulb in the central nervous system (Kadohisa, 2013). The olfactory bulb forms connections with other brain areas such as amygdala (the center of emotions) (Wilson-Mendenhall et al., 2013) and the entorhinal cortex (important in memory) (Takehara-Nishiuchi, 2014). The amygdala, in turn, is connected to the hypothalamus, a part of brain that regulates physiological states, e.g. controlling the release of stress hormones. This is one reason why smells can have an impact on our mood and why they evoke such strong memories. Can you think of any smell which conjures up a memory for you? – If so, let us know in the comments below!

The_Soul_of_the_Rose_-_WaterhouseA number of people find that essential oils can affect their mood but these are not the only odorants can which have this effect. If you like spending time in nature you probably noticed that being surrounded with vegetation can reduce stress. One study suggests that the “green odour” (the scent of leaves and vegetation) changes the electrical signals in our brain in a way that brings about a sedative-like action, reflected in a feeling of relaxation (Sano et al., 2002). Studies on rats have shown that this effect could be due to the action of the green odour on the brain circuit which release adrenaline and cortisol (the hypothalamic-pituitary-adrenal axis) (Nakashima et al., 2004).

Another botanical scent, the essential oil of rose, may have a similar effect on the brain’s stress circuitry (Fukada et al., 2012). Women who carried a test paper soaked in rose essential oil for several days during exam period showed no change in their cortisol levels, while those students supplied with a jasmine aroma patch or nothing at all, had increased amount of cortisol around their exams. One suggestion raised by this study is that rose essential oil could prevent the release of stress hormones. Further, in another study essential oil extracted from orange peels reduced the activity in the prefrontal cortex, part of the brain involved in integrating information, planning and making decisions (Igarashi et al., 2014). After barely ninety seconds of inhaling these oils participants felt more “comfortable”, “relaxed” and “natural”.

Have you ever noticed that in times of stress your skin becomes dry or you are plagued by eczema? Stress causes shrinking of the lipids that form the protective skin barrier, increasing transepidermal water loss (TEWL) – the escape of moisture from the skin. Some studies suggest that inhaling the “green odour” or rose essential oil can reduce this water leakage and prevent the stress-related drying of the skin (Fukada et al., 2007).

Aromatherapy is based on a holistic approach to the patient, considering both their physical and psychological needs (meaning that any effects of aromatherapy may be person-specific). Scientific studies have shown evidence both for and against the effectiveness of aromatherapy but with many individuals reporting benefits further research is certainly required.

This article is for informational purposes only. Always use essential oils as instructed by the manufacturer or a therapist.

Post by: Jadwiga Nazimek

Fukada, M., E. Kano, M. Miyoshi, R. Komaki, and T. Watanabe, 2012, Effect of “rose essential oil” inhalation on stress-induced skin-barrier disruption in rats and humans: Chem Senses, v. 37, p. 347-56.

Kadohisa, M., 2013, Effects of odor on emotion, with implications: Front Syst Neurosci, v. 7, p. 66.

Nakashima, T., M. Akamatsu, A. Hatanaka, and T. Kiyohara, 2004, Attenuation of stress-induced elevations in plasma ACTH level and body temperature in rats by green odor: Physiology & Behavior, v. 80, p. 481-488.

Sano, K., Y. Tsuda, H. Sugano, S. Aou, and A. Hatanaka, 2002, Concentration effects of green odor on event-related potential (P300) and pleasantness: Chemical Senses, v. 27, p. 225-230.

Takehara-Nishiuchi, K., 2014, Entorhinal cortex and consolidated memory: Neurosci Res, v. 84, p. 27-33.

Wilson-Mendenhall, C. D., L. F. Barrett, and L. W. Barsalou, 2013, Neural Evidence That Human Emotions Share Core Affective Properties: Psychological Science, v. 24, p. 947-956.

Share This