The Nuclear (Waste) War

Article by Rose Linihan, student of Xaverian College (Manchester) and winner of the British Science Association’s  2017 Science Journalism contest.

The United Kingdom currently faces nuclear threat. And no, not that kind. There is in fact a potential energy crisis on its way, involving huge energy shortages and 100,000 tonnes of nScreen Shot 2017-05-26 at 14.33.25uclear waste, to be precise.

There are currently nine nuclear power stations here in the UK, providing 22% of our total electricity. The Government have decided they want nuclear power to continue to provide a portion of our energy, alongside other low-carbon options. The general public conception of nuclear power is notoriously bad, and yet nuclear power is very effective. It’s a low-carbon way of producing the energy needed to power everything in the UK, from our toasters to TVs, and radioactivity is all around us – there’s even radioactivity in bananas!

Nuclear energy itself is produced by a process called fission, whereby a very unstable isotope of an element called uranium is split into two smaller radioactive nuclei and 2 or 3 neutrons are released and lots of energy. In a nuclear reactor, uranium fuel is surrounded by graphite (material that used to be in pencils) moderators and keep the reaction under control by slowing the neutrons down so they’re at the optimum speed for a further reaction to occur. After it has done its job inside the nuclear reactor, this graphite is known as nuclear waste.

However, our current reactors are now old and so require decommissioning and replacing with new and more advanced models, or else there will be a national energy shortage. Which leaves the us with the problem of the 100,000 tonnes of radioactive nuclear waste. Not to mention 300,000 tonnes worldwide. The NDA (Nuclear Decommissioning Authority) is responsible for decommissioning nuclear waste and their present plan of how to do this is to wait 100 years and then bury the waste in a geological disposal facility. Another option is to go down a similar route to US whereby waste is shipped in containers and the stored in underground tunnels by machines. These options are both very expensive, costing a whopping £20 billion, not to mention being very time consuming and the fact that suitable geological sites are rare. So what do we do? Dump it at the bottom of the ocean? Bury it somewhere? Launch it into space? Or something else…

Alex Theodosiou is a post-doctoral research associate at Manchester University, working in the field of nuclear decommissioning as part of the Nuclear Graphite Research Group. They work as part of a consortium to come up with novel methods of tackling the nuclear waste crisis. Alex is currently researching the thermal treatment of nuclear graphite by reacting it with oxygen at high tempuratures to produce carbon dioxide. This carbon dioxide can then be managed using carbon capture techniques such as liquefication. Alex says ‘This will lead to a massive volume reduction in the graphite inventory and should help reduce overall costs involved with decommissioning, as well as reduce the lengthy timescales currently predicted.’ It could also have wider applications such as nuclear weapon disposal.

Alex’s laboratory work is small scale and involves using a few grams of nuclear grade graphite and heating it with a tube furnace under various conditions, before using a gas analyser to monitor the species formed. This lab data can then be transferred to an industrial scale by partner companies who use a plasma furnace and greater volumes of graphite, to produce results on 1000x the scale.

Alex and his colleages hope that together they can develop a commericially viable decommissioning strategy for the nuclear sector, to propose to the NDA to hopefully win the war against nuclear waste!

Informatics for health – an interdisciplinary extravaganza.

A few weeks ago I attended the European Federation for Medical Informatics and the Farr Institute of Health Informatics Research’s Manchester-based conference – Informatics for Health 2017. The conference was a vibrant mix of academic thought topped off with a generous helping of public collaboration, showing that the field of health and medical informatics takes collaboration and public involvement very seriously.

Since health informatics covers all aspects of health-data collection, storage and processing it would be impossible to do justice to the sheer breadth of research presented at this conference in a single article. Therefore, here I will focus on a couple of my personal highlights.

On Tuesday the 25th, Susan Michie from University College London gave a keynote talk about the Human Behavioural Change Project:

With environmental, social and health concerns appearing endemic in our society, Suzan noted that one of the best ways to address these issues would be through targeted behavioural change interventions. These take a huge array of forms from subtle nudges implemented by many governments and large organisations (encouraging everything from litter reduction to targeted urinal use – see here for examples), to less than subtle public health campaigns. These interventions are widely documented across academic literature and show a range of outcomes and successes. Susan outlined a vision where this literature could be used to answer the big question:

‘What behaviour change interventions work, how well, for whom, in what setting, for what behaviours and why’

This is undoubtedly a pretty ambitious question to answer and it is made harder by the fact that the literature on this subject, although vast, is often fragmented, inconsistent and sometimes incomplete. So how do Susan’s team propose to tackle this big data problem?

The Human Behaviour-Change Project, funded by the Wellcome Trust, draws together some of the best minds in behavioural, computer and information science. Their output will depend on the close working relationships and interplay between all disciplines involved.

Behaviour scientists have been tasked with developing an ‘ontology’, basically a standardised method of categorising different behavioural change interventions. It is then hoped that this standardised ontology can be used to both sort existing literature and as a template on which new studies can be based. It is hoped that this will add some much needed order to the current fragmented literature and pave the way for further analysis. Specifically, computer scientists on this team will use Natural Language Processing (a branch of computer science which employs artificial intelligence and computational linguistics to sort and process large bodies of text) to extract and organise information from these studies, whilst also learning as they process this information.

Finally information scientists, the big data miners, will develop effective user interfaces which allow researchers to delve into this data and to untangle it in a way that reveals answers to many important research questions.

This is undoubtedly a huge task but with the combined input of so many specialists it certainly seems tractable.

On Wednesday the 26th the conference was drawn to a close with a compelling talk from Sally Okun, Vice President for Advocacy, Policy and Patient Safety at PatientsLikeMe, an online patient powered research network. The PatientsLikeMe network partners with 500,000+ patients living with 2700+ conditions and offers a platform for patients to share experiences and where researchers can learn more about treatments directly from those undergoing them. Indeed, more than 90 peer reviewed papers have already stemmed from data collected through the PatientsLikeMe network.

The theory behind this work is compelling and almost begs the question as to why such networks are not yet commonplace. Indeed, it’s no secret that online marketers spend billions analysing our search histories and purchase data in an attempt to feed us highly personalised targeted marketing, so why shouldn’t patient experiences be used to tailor personalised medicine? Although there are undoubtedly greater complications linked to the use of patient data, not to mention the perils of misinformation, this is no excuse not to try and work towards a digital ideal.

Sally also discussed the launch of their new platform, the Digital Me. This platform will combine a plethora of personal health data including genetic data, medical histories, activity tracking – basically if you can collect it you can include it. Their hope is that this data can be used to personalise medical treatments, tailoring them to your own individual requirements. Indeed, advances in statistical methods could take us beyond blanket prescribing and into a world where your digital profile can be compared to those similar to you (similarity being based on a large number of patient characteristics) and recommendations made based on successes and failure of treatments for you nearest digital neighbours (those sharing most of your traits).

As my first experience of an informatics-based conference, I was struck by both the breadth and depth of knowledge in the field and the ethos of working together to optimise our outputs – a skill which is often found lacking in other fields. It was also plain that researchers in this area value patient input and many elements of this conference were tailored to be accessible and engaging for a lay audience. Indeed, representatives from HeRC’s own patient public forum who attended the event enjoyed the opportunity to engage further with researchers and learn about engagement and involvement work being conducted across the field.

Post by: Sarah Fox

Save

Save